Enhanced kinetic stability of pure and Y-doped tetragonal ZrO$_2$

Michaela Kogler$^{1#}$, Eva-Maria Köck$^{1#}$, Stefan Vanicek2, Daniela Schmidmair3, Thomas Götsch1, Michael Stöger-Pollach4, Clivia Hejny3, Bernhard Klötzer1, Simon Penner1*

1Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria

2Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria

3Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52d, A-6020 Innsbruck, Austria

4University Service Center for Transmission Electron Microscopy (USTEM), Vienna University of Technology, Wiedner Hauptstrasse 120, A-1040 Vienna, Austria
Abstract
The kinetic stability of pure and yttrium-doped tetragonal zirconia (ZrO$_2$) polymorphs prepared via a pathway involving decomposition of pure zirconium and zirconium+yttrium isopropoxide is reported. Following this preparation routine, high-surface area, pure and structurally stable polymorphic modifications of pure and Y-doped tetragonal zirconia are obtained in a fast and reproducible way. Combined analytical high-resolution in-situ transmission electron microscopy, high-temperature X-ray diffraction, chemical and thermogravimetric analysis reveals that the thermal stability of the pure tetragonal ZrO$_2$ structure is very much dominated by kinetic effects. Tetragonal ZrO$_2$ crystallizes at 400°C from an amorphous ZrO$_2$ precursor state and persists the further substantial transformation into the thermodynamically more stable monoclinic modification at higher temperatures at fast heating rates. Lower heating rates favor the formation of an increasing amount of monoclinic phase in the product mixture, especially in the temperature region around 600°C and during/after re-cooling. If the heat treatment is restricted to 400°C even under moist conditions, the tetragonal phase is permanently stable, regardless of the heating or cooling rate and, as such, can be used as pure catalyst support. In contrast, the corresponding Y-doped tetragonal ZrO$_2$ phase retains its structure independent of the heating or cooling rate or reaction environment. Pure tetragonal ZrO$_2$ can now be obtained in a structurally stable form, allowing its structural, chemical or catalytic characterization without in-parallel triggering of unwanted phase transformations, at least if the annealing or reaction temperature is restricted to $T \leq 400°C$.

These two authors contributed equally to the work
Keywords: zirconia, zirconium propoxide, yttria-stabilized zirconia, YSZ, high-temperature X-ray diffraction, thermogravimetry, phase transformation

1. Introduction

Zirconia-containing materials have been and still are some of the most extensively studied oxide systems due to their outstanding material and physico-chemical properties.1–6 The application range thereby encompasses quite diametral research areas such as ceramics technology2 or catalysis,4 further confirming its outstanding technological role. Although recent interest lies more on its exploitation as functional material, it also represents one of the best studied systems from a fundamental physico-chemical point of view. This is mainly due to its polymorphic forms, which include monoclinic, tetragonal, cubic and amorphous structures, their stability thereby reported to depend on particle size, gas phase pressure, temperature or doping level.5,7–9 Especially well-studied in this respect are the phase transformations between the different structures. The transformation between the tetragonal and the monoclinic phase is particularly well-understood on the atomic level and is assigned to a martensitic-type phase transformation, a diffusionless and athermic structural rearrangement involving cooperative shear movements of the structural entities.5,10 However, apart from the fundamental scientific level, the interest in a better understanding for more application-oriented research is mainly fuelled by the different structural, electronic and (surface) chemical properties, giving rise to altered adsorption, catalytic or general materials behavior. These differences are best seen in a comparison between undoped monoclinic ZrO\textsubscript{2} and Y-doped tetragonal ZrO\textsubscript{2} on the one hand, and pure monoclinic and pure tetragonal ZrO\textsubscript{2} on the other hand. As for the former, Y stabilizes the tetragonal/cubic ZrO\textsubscript{2} structure. Y-stabilized ZrO\textsubscript{2} is used as an ionic conductor at high temperatures in solid-oxide fuel cells – in
contrast to monoclinic ZrO$_2$. Comparing the respective tetragonal and monoclinic ZrO$_2$ structures with respect to surface and adsorption chemistry, clear differences in the adsorption behavior arise, which, in due course, may eventually give rise to altered catalytic or materials behavior. However, this discussion reveals an inherent drawback in the comparative characterization of such polymorphic forms: differences with respect to kinetic stability might trigger unwanted phase transformations during characterization of the phase under question and in consequence might lead to uncontrollable compositions of structural mixtures of e.g. monoclinic and tetragonal ZrO$_2$ while performing e.g. a catalytic reaction. This might in turn obscure the unequivocal assignment of e.g. catalytic properties to the surface of a single-phase ZrO$_2$ support. Having said that, a number of different procedures exist to induce the formation of the room-temperature metastable tetragonal ZrO$_2$ polymorph, either via dedicated chemical preparation routines e.g. following an alkoxide decomposition pathway or via structural stabilization exploiting particle size and crystallographic effects. As for the latter, it has been determined theoretically and experimentally that the tetragonal structure is stable between grain sizes of 5 and 40 nm or that structural similarities between hydrous precursor species and the tetragonal ZrO$_2$ structure might aid the stabilization. However, despite these efforts in preparation, the subsequent structural stability test and persistence against phase transformation under reaction conditions has so far been either not focussed upon in detail. For example, some adsorption studies using small test molecules like CO or CO$_2$ have been conducted at temperatures where other authors already observed a phase transformation. In some cases, where the initial tetragonal ZrO$_2$ sample was clearly phase-pure after preparation, this purity was not reported after use. Especially the presence of water in the gas phase was reported to induce the phase transformation, which might impose great disadvantages when using tetragonal ZrO$_2$ as a support in reforming processes.
In order to close this knowledge gap, and to clarify the thermo-chemical stability issue, we herein report a detailed study on the preparation of structurally stable clean and pure, as well as Y-doped tetragonal ZrO_2 materials starting from zirconium and yttrium isopropoxide precursors. The eventual phase transformations from the amorphous precursor to the tetragonal phase as well as to the monoclinic polymorph were studied structurally and kinetically using an array of in-situ structure-determining methods (high-temperature, high-resolution transmission electron microscopy, high-temperature temperature-programmed X-ray diffraction). For complementary information on the chemical state during the transformations, X-ray fluorescence spectroscopy and thermogravimetric analysis coupled with differential scanning calorimetry and mass spectrometry were used. Additional morphological and structural information was obtained by ex-situ scanning electron microscopy and Raman spectroscopy.

The effort of our work yielded not only a structurally stable pure and Y-stabilized high-surface area tetragonal ZrO_2 material, but also detailed information on the kinetic limitations of the tetragonal-to-monoclinic phase transformation, which could, to some extent, be steered by carefully adjusting the experimental parameters. Subsequently, our approach, most importantly, offers the novel possibility to reliably structurally and catalytically characterize a pure, structurally stable tetragonal ZrO_2 sample in comparison to the Y-doped tetragonal ZrO_2 phase.

2. Experimental

2.1. Material Preparation

For preparing pure tetragonal zirconia and 8 mol% yttria-stabilized tetragonal zirconia, zirconium(IV)isopropoxide (isopropanol adduct, 99.9%-Zr, Strem Chemicals) and yttrium(III)isopropoxide (isopropanol adduct, Strem Chemicals) were used as starting materials. The followed preparation routine is a variant of the one reported by Mazdiyasni et
al. via decomposition of zirconium alkoxides and the subsequent hydrolysis of zirconium hydroxy aerogels. This method is a fairly common preparation pathway to nanocrystalline zirconia polymorphs. Since our modified method is of paramount importance for preparation of different zirconia structures, we provide a concise discussion with respect to literature-reported data at the beginning of the Results and Discussion section.

The starting materials were weighted in a glove box with an N\textsubscript{2} protective atmosphere being established during the whole preparation until final quenching with water. All used glass devices were baked out at 100°C to ensure completely water-free conditions. In order to obtain ~ 4 g final zirconia product, for pure tetragonal ZrO\textsubscript{2} 12.58 g zirconium (IV) isopropoxide, and, for 8 mol% yttria-stabilized tetragonal ZrO\textsubscript{2}, 11.58 g zirconium (IV) isopropoxide together with 0.64 g yttrium (III) isopropoxide were dissolved in 260 mL isopropanol (Finne Gatt-Koller, 99.98%). Isopropanol was added dropwise and the suspension/solution vigorously stirred during addition. In summary, 1 h and careful heating with a warm water bath (50°C) were necessary to totally dissolve the isopropoxide materials. After re-cooling the solution to room temperature, a stoichiometric amount of 3.4 mL water was then added dropwise. The resulting gel was stirred for additional 30 minutes and the solvent was removed on a rotary evaporator. The white powdery product was dried in vacuo at a constant temperature of 100°C. In due course, the obtained aerogels were used as starting materials for all characterization experiments. BET measurements revealed specific surface areas of ZrO\textsubscript{2} of 12 m2 g-1 after calcination at 400°C, decreasing to 4 m2 g-1 after calcination to 1000°C. For YSZ, 21 m2 g-1 was measured after calcination at 400°C, decreasing to 8 m2 g-1 at 1000°C. Chemical Analysis of all samples was performed using a Spectro – XEPOS energy dispersive X-ray fluorescence analyzer (EDXRFA) and revealed purities of 99.99%. A representative analysis, including correlation to a commercially available monoclinic ZrO\textsubscript{2} compound, is provided in Table S1 in the Supporting Information.
2.2. X-ray Diffraction

High-temperature XRD data were collected with a Siemens D5005 diffractometer using theta-theta coupling, parallel beam optics and a scintillation counter using Cu K$_{\alpha1}$ and K$_{\alpha2}$ radiation. Scans were taken in the 2θ range from 10-70° with 0.02° 2θ steps and a counting time of 2s step$^{-1}$. For high-temperature experiments the diffractometer is equipped with an Anton Paar HTK1200 temperature chamber.

Samples were prepared in a corundum sample holder. For the experiments with slower heating rate, scans measured in air were taken every 50°C in the temperature range from 50 to 1000°C. A heating rate of 0.1°C s$^{-1}$ between the particular temperature steps was applied. Taking into account that measuring a whole scan requires about 105 min including an equilibration period of 5 min before every scan and a heating time of 8 min between the scans, the actual heating rate over the entire experiment is accordingly lower than 0.01°C s$^{-1}$. The resulting length of the experiments varies between 1946 min (32h 26 min; 400°C), 2398 min (40 h; 600°C), 2850 min (47h 30 min; 800°C) and 3302 min (55 h 2 min; 1000°C).

For faster XRD measurements, the samples were annealed at 0.5 °C s$^{-1}$ to the respective temperatures (600, 800 or 1000°C), followed by an extended isothermal annealing period and re-cooling to room temperature also at 0.5 °C s$^{-1}$ (all in air). The respective heating (or recooling) times are ~ 19 min (600°C), ~26 min (800°C) and ~ 33 min (1000°C). Immediately after reaching the required temperatures, the first scan was started. The time taken per scan was 100 min, 14 scans were taken at the respective highest temperatures, and additionally one after re-cooling. The resulting length of the experiments varies between 1538 min (25h 38 min; 600°C), 1550 min (25 h 50 min; 800°C) and 1565 min (26 h 05 min; 1000°C).
For the measurements of the samples treated under moist conditions, a D8 Discover diffractometer in Bragg-Brentano geometry was used. The diffractometer is equipped with a Cu-tube, a primary Ge monochromator and a LYNXEYE detector. During the measurements, the samples were supported on a rotating Si single crystal holder with suppressed background intensity. Scans were taken in the 2θ range from 10-70° with 0.01° 2θ steps and a counting time of 2s step\(^{-1}\).

For qualitative phase analysis, the software DIFFRAC\(^{\text{plus}}\) EVA\(^{36}\) in combination with the database PDF-4\(^{+}\)\(^{37}\) was used. Phase quantification was performed with the software TOPAS\(^{38}\) by employing the Rietveld method. Initial starting values for the structure refinements were taken from literature data\(^{39-41}\). In the course of the Rietveld refinement, scale factors, lattice parameters, “size-like” Lorentzian and “strain-like” Gaussian peak broadening of the contributing phases were adjusted.

2.3. Transmission and Scanning Electron Microscopy

The samples were analyzed using a 200 kV FEI Tecnai F20 (scanning) transmission electron microscope ((S)TEM). The phases were identified by selected area electron diffraction (SAED) and high-resolution TEM (HRTEM). For the annealing treatments, a double tilt heating holder capable of operating at temperatures up to 1000°C in vacuo was used. All SEM experiments were conducted using an SM 982 GEMINI ZEISS Field Emission Scanning Electron Microscope. Prior to SEM imaging, the samples were coated with 10 nm Au/Pd to improve its conductance and fixed with conducting carbon paste.

2.4. Thermogravimetric Analysis

The DTA experiment was performed on a Setaram SetsysEvolution 2400 instrument, using a TGA-DTA1600 transducer, equipped with Pt/Pt-Rh S-type thermocouples. The instrument is
coupled with an OmniStar QMS200, Pfeifer Vacuum quadrupol mass spectrometer. For the first experiment, 19.80 mg of the pulverized ZrO$_2$ sample material was filled in a 100 µL Al$_2$O$_3$ crucible. Subsequently, after a routine pre-run including evacuation and flooding the sample chamber with He, the DTA experiment was carried out by heating with a rate of 0.25 °C min$^{-1}$ to a maximum temperature of 600°C in He atmosphere and simultaneous recording of selected masses (m/z = 12, 15, 16, 17, 18, 28, 32, 44, 58, 59, 60, corresponding to carbonaceous fragments from the decomposition of the alkyl group, water, oxygen, CO, CO$_2$ and OH-fragments). To avoid loss of material during application of vacuum to the samples, in a second experiment the pre-run did not include vacuum but a thoroughly extended He-flooding of the sample chamber. In this experiment, 10.46 mg of powder material was heated in a corundum crucible with a lid to 600 °C with 1°C min$^{-1}$ heating rate and kept at this temperature for the subsequent 5 hours before finally cooling down.

2.5. Raman Spectroscopy

Confocal Raman spectra of the polycrystalline samples in the range of 50 – 3800 cm$^{-1}$ were recorded with a Horiba Jobin Yvon Labram-HR 800 Raman micro spectrometer. The samples were excited using the 532 nm (2.33 eV) emission line of a frequency-doubled 25 mW Nd:YAG laser under an Olympus 100x objective lens with a numerical aperture of 0.9. The size of the laser spot on the surface was approximately 1 µm in diameter. The scattered light was dispersed by an optical grating with 1800 lines mm$^{-1}$ and collected by a 1024 x 256 open-electrode CCD detector. The spectral resolution, determined by measuring the Rayleigh line, was better than 2 cm$^{-1}$. The spectra were recorded in unpolarized mode at ambient conditions. The accuracy of the Raman line shifts, calibrated by measuring a silicon standard, was in the order of 0.5 cm$^{-1}$.
3. Results

3.1. (High-temperature) X-ray Diffraction

Structural analysis of the samples during preparation and eventual phase transformation was mainly based on high-temperature X-ray diffraction and *in-situ* electron microscopy (section 3.2). Figure 1 panels A-D show experiments, where the initially amorphous ZrO$_2$ gel precursor was heated to different temperatures with subsequent prolonged isothermal periods at the highest temperatures, before final cooling down. Most notably, the average heating rate in these experiments is very slow, as outlined in detail in section 2.2. in the Experimental Section. The basis of the data shown in Figure 1 is a Rietveld analysis of the crystalline phases in the respective diffractograms, finally plotted as relative fraction of the ZrO$_2$ phases versus annealing temperature. The X-ray diffractograms are shown in Figure S2 in the Supporting Information, as is a corresponding exemplary Rietveld analysis (Figure S1). As shown in panel A, crystallization of the tetragonal ZrO$_2$ phase sets in fast and is finished at 400°C. No tetragonal ZrO$_2$ is observed below 400°C and once crystallized, no remaining amorphous ZrO$_2$ is qualitatively visible in the background of the XRD patterns at annealing temperatures of 400°C and above. No apparent crystallization of the monoclinic phase has been observed over the entire period of the experiment. Repeating the experiment, but annealing to 600, 800 and 1000°C, respectively, causes reproducible presence and detection of the tetragonal phase at 400°C, but also induces further partial transformation of the tetragonal into the monoclinic phase. Up to 20% of this latter phase is found in the product mixture at the respective highest temperatures. Upon re-cooling, this amount increases without exception up to 80-90%.
Figure 1: Representation of the high-temperature X-ray diffraction experiments on the pure ZrO$_2$ sample after different annealing treatments up to 400°C (panel A), 600°C (panel B), 800°C (panel C) and 1000°C (panel D). The colors of the markers denote the different tetragonal and monoclinic ZrO$_2$ phases. Dashed vertical lines denote the range of the isothermal periods (20 h for the experiment at 400°C, 18 h 20 min for the experiments at 600°C, 800°C and 1000°C). The arrows indicate the presence range of amorphous ZrO$_2$.

To further shed light on the kinetics of the transformation from tetragonal to monoclinic ZrO$_2$, the enrichment of monoclinic ZrO$_2$ in the product mixture has been analyzed as a function of reaction time during annealing/isothermal periods and plotted as shown in Figure 2. The vertical lines limit the respective isothermal periods. Note that the temperature information can in principle be extracted directly from the time axis: hence, the second point at 213
minutes reaction time corresponds to 600°C. Consequently, the onset of formation of the monoclinic phase is observed roughly at the same temperature of about 600°C. However, the subsequent transformation rate during the subsequent isothermal periods and/or annealing to higher temperatures is clearly different. A steep increase of the amount of monoclinic ZrO₂ after prolonged heating for 1 h at 600°C is observed, adding up to about 30 weight% at the end of reaction. The formation of the monoclinic ZrO₂ phase is apparently not finished at 1263 minutes reaction time (red dashed line). In contrast, either heating to and holding the temperature at 800°C or 1000°C clearly slows down the phase transformation rate to monoclinic ZrO₂ and in consequence, at maximum only 10% monoclinic ZrO₂ are observed. These differences are most clearly seen in the isothermal reaction periods.

![Kinetic analysis of the tetragonal-to-monoclinic phase transformation as a function of annealing time and temperature shown as enrichment of the crystalline monoclinic ZrO₂ phase during annealing/the isothermal reaction parts. Experiments up to 600°C, 800°C and 1000°C are represented on the basis of the data highlighted in Figure 1 (Heating rate: < 0.01°C s⁻¹). The dashed vertical lines represent the isothermal reaction parts after annealing. Duration of the isothermal periods as in Figure 1.](image)

Figure 2: Kinetic analysis of the tetragonal-to-monoclinic phase transformation as a function of annealing time and temperature shown as enrichment of the crystalline monoclinic ZrO₂ phase during annealing/the isothermal reaction parts. Experiments up to 600°C, 800°C and 1000°C are represented on the basis of the data highlighted in Figure 1 (Heating rate: < 0.01°C s⁻¹). The dashed vertical lines represent the isothermal reaction parts after annealing. Duration of the isothermal periods as in Figure 1.
To unravel the kinetics of the tetragonal-to-monoclinic phase transformation in more detail, associated experiments with a comparably fast heating rate (0.5°C s⁻¹) have additionally been performed (Figure 3; the corresponding XR diffractograms are shown in Figure S3). Obviously, the extent of phase transformation in the isothermal reaction parts is very much suppressed in comparison to the data shown in Figure 2 – at maximum, 3% monoclinic ZrO₂ have been observed after annealing at 600°C. Also in accordance with Figure 2, the amount of monoclinic ZrO₂ formed at higher temperatures is much lower. For the experiments highlighted in Figure 3, at 800°C and 1000°C no visible phase transformation has taken place. In contrast, but corroborating the data shown in Figure 2, after re-cooling to room temperature, the associated phase transformation is almost complete (80-100% monoclinic ZrO₂). This indicates that the major part of the phase transformation occurs during cooling.

Figure 3: Kinetic analysis of the tetragonal-to-monoclinic phase transformation as a function of reaction time at 600°C, 800°C and 1000°C shown as enrichment of the crystalline monoclinic ZrO₂ phase as for the fast XRD heating experiments (0.5°C s⁻¹). The inset shows an expanded view. Isothermal period: 23 h 20 min.

A particular important topic in catalysis, especially with respect to a potential use in reforming reactions, is the metastability under moist conditions (in presence of water vapor as
a reactant). In this respect, Xie et al. report a significantly faster rate of the tetragonal-to-
monoclinic transformation in the presence of water vapor, even at room temperature. As a
tentative explanation, altered surface free energies of monoclinic and tetragonal ZrO$_2$ with
and without water adsorbed on their surfaces, and moreover, as a function of crystallite size,
is offered.35 In due course, we tested our tetragonal ZrO$_2$ phase for its stability under moist
conditions in the temperature range from room temperature to 420°C. For these experiments,
the tetragonal ZrO$_2$ phase was crystallized by annealing in dry oxygen up to 420°C, re-cooled
to room temperature and finally treated in moist He in the above-mentioned temperature range
for 1 h. All samples were annealed and re-cooled in moist He. The corresponding XR
diffractograms are summarizingly shown in Figure 4. It is immediately clear, that only
tetragonal ZrO$_2$ is present and no transformation into the monoclinic phase has been observed
(Indexing of the reflections of the tetragonal phase was based on pattern # 00-050-1089 for
Cl$^{-}$-stabilized ZrO$_2$, PDF 4+ database39).

Figure 4: X-ray diffractograms collected after treatment of the tetragonal ZrO$_2$ phase in moist
He at temperatures from room temperature (25°C) to 420°C. He was saturated with water
vapor (6.1 mbar) and the sample heated and re-cooled under moist conditions. The total flow was \(\sim 1 \text{ ml s}^{-1} \). Reflections of the tetragonal \(\text{ZrO}_2 \) structure have been indexed according to ref.39.

Analogous experiments have also been performed for the corresponding Y-doped \(\text{ZrO}_2 \) sample. As a representative example, the heating – isothermal period – re-cooling cycle from room temperature to 1000°C is shown (Figure 5). As can be clearly seen, the initially amorphous Y-doped \(\text{ZrO}_2 \) sample crystallizes in the tetragonal \(\text{ZrO}_2 \) structure but persists further transformation to a monoclinic phase at any temperature, in contrast to pure \(\text{ZrO}_2 \). The corresponding patterns are shown in Figure S4 in the Supporting Information.

![Figure 5: Representation of the high-temperature X-ray diffraction experiments on the Y-doped \(\text{ZrO}_2 \) sample after annealing up to 1000°C. The colors of the markers denote the different tetragonal and monoclinic \(\text{ZrO}_2 \) phases. Dashed vertical lines indicate the range of the isothermal period (18h 20 min). The arrow indicates the presence range of amorphous \(\text{ZrO}_2 \).](image-url)
3.2. In-situ Transmission Electron Microscopy and Scanning Electron Microscopy

Figure 6 and 7 show the in-situ electron microscopy experiments performed to monitor the structural evolution during the annealing in close correlation to the X-ray diffraction and the thermogravimetric analysis. We, however, note that due to the experimental conditions during annealing of the sample using the TEM heating stage, the heating rate is very fast (comparable to TGA, but much faster than during the “slow” high-temperature X-ray diffraction experiments). Comparing the TEM overview images of a ZrO$_2$ grain before (i.e. in the amorphous state, Figure 6 panel A) and after the annealing treatment up to 900°C (Figure 6 panel B), the crystallization is clearly visible by the enhanced internal contrast of the grain within the square-marked region, which is indicated in both images and refers to the area that was monitored during the annealing experiment shown in Figure 7. Figure 7 finally shows the SAED patterns and the high-resolution images acquired during the in-situ annealing treatment (the full assignment of the measured reflections to theoretical lattice spacings is outlined in Table S2 in the Supporting Information). The full sequence of the experiment from room temperature to 900°C and back to room temperature is highlighted in panels A-H (characteristic reflections of the tetragonal ZrO$_2$ structure are marked in blue, those of the monoclinic structure in orange). In the gel precursor state (panels A and B) the structure is amorphous, as evidenced in the SAED pattern showing only a diffuse halo and the high-resolution image, where no lattice fringes or any other signs of crystallization are present. In accordance with XRD and thermogravimetry, crystallization of the tetragonal ZrO$_2$ phase occurs at around 400°C (panels C and D). The distinct tetragonal SAED pattern, as well as the corresponding lattice fringes are observed in the high-resolution images (some of the most intense reflections and most characteristic fringes are marked). Up to 750°C, no intensity changes in the reflections of the tetragonal ZrO$_2$ structure or any additional spots/fringes in the corresponding SAED patterns or TEM images have been observed. However, at higher temperatures, especially the SAED patterns indicate the formation of modest amounts of the
monoclinic ZrO$_2$ phase (panels E and F). This phase also persists upon re-cooling the sample (panels G and H), but its amount does not increase substantially. The presence of the monoclinic ZrO$_2$ phase has been inferred by the appearance of very weak additional spots in the SAED pattern (corresponding to the (-111) and (211) reflection of the monoclinic ZrO$_2$ structure, pattern #00-037-1484, PDF 4+ database42, panel E). We emphasize that not only the stability of the phase-pure tetragonal ZrO$_2$ sample up to 750°C, but also the essential phase-purity at higher temperatures and upon re-cooling is basically due to the fast heating and cooling rates, which suppress the further transformation into the monoclinic phase. It should also be noted that the electron microscopy data, especially those after re-cooling the sample to room temperature in vacuo, in fact corroborate the suggestions by different authors, that the oxygen/water partial pressure and the resulting vacancy concentration upon re-cooling dominates the eventual phase transformation from tetragonal to monoclinic ZrO$_2$. Samples cooled in vacuo – due to the higher amount of vacancies and the resulting better structural stability of tetragonal ZrO$_2$ – are suggested to persist transformation into the monoclinic modification. In contrast, the higher the amount of oxygen/water, the faster the transformation into monoclinic ZrO$_2$.27,29,30,35 In our experiments, the amount of monoclinic ZrO$_2$ is accordingly very low. This is basically corroborated especially by the thermogravimetric analysis and again proves that the stability is very much dominated by surface chemistry - induced kinetic effects.
Figure 6: Overview transmission electron micrographs of the pure ZrO$_2$ sample before (panel A) and after the heating-cooling cycle (panel B). The square-marked region is shown in high-resolution detail in Figure 7.
Figure 7: *In-situ* collected transmission electron microscopic images following the crystallization of the ZrO$_2$ phases from room temperature to 900°C, as well as after re-cooling to room temperature. Important reflections of the tetragonal (blue) and monoclinic ZrO$_2$ phase
(orange) have been marked. Orange arrows in panels F and G denote reflections of the monoclinic structure, corresponding to the listing in the Table S2. Temperatures were as indicated.

The morphology of the samples after different annealing steps has additionally been followed by scanning electron microscopy and basically corroborates the loss of surface area during annealing to very high temperatures. The images are shown in Figure S5 in the Supporting Information.

3.3. Thermogravimetric Analysis

To exactly determine the temperature of the eventual phase transformations and to gain associated information on the chemical changes during the phase transformation, thermogravimetric analysis coupled with mass spectrometry has been performed. These experiments included also time- and rate-dependent measurements to investigate the kinetic limitations of the phase transformation(s).

Figure 8 highlights experiments using a rather fast heating rate of 0.25°C min⁻¹ up to 600°C with immediate re-cooling to room temperature. The black trace (in panel A) denoting the mass loss during annealing indicates that most of the mass loss, totalling 2.8 mg (corresponding to 18%), is happening up to about 300°C, well before crystallization to tetragonal ZrO₂ takes place. The first (and only) transformation is observed at around 400°C (strong exothermic peak in the blue trace). Also upon re-cooling, no other transformation is observed. As evidenced by HT-XRD and in-situ TEM, the phase transformation can be correlated with the crystallization of the tetragonal ZrO₂ modification. No monoclinic structure has been observed during this experiment. The mass spectrometer signals (panel B and C) indicate mostly loss of water (m/z = 18), CO₂ (m/z= 44), CO (m/z = 28) and CH-
containing fragments arising from the decomposition of the isopropoxide alkyl group (m/z = 58,59,60). Most notably, all chemical changes are clearly finished before the amorphous-to-tetragonal ZrO₂ transformation sets in. Together with RFA and the results from the structural analysis, we might infer the presence of a chemically and phase-pure tetragonal ZrO₂ sample after annealing to 400°C and also after re-cooling to room temperature.

In order to investigate the kinetic stability of the tetragonal structure, a corresponding experiment with a comparable heating rate (1°C min⁻¹), but an extended isothermal period at 600°C for 6 h has been performed and is shown in Figure 9. As can be clearly seen, also in this case, no further transformation into the thermodynamically more stable monoclinic polymorph has been observed. In summary, the decomposition of the gel precursor state appears to be finished at around 300°C, followed by crystallization of the tetragonal ZrO₂ structure at around 400°C. In-between, amorphous ZrO₂ is present, without signs of crystallization.
Figure 8: Thermogravimetric analysis of the ZrO$_2$ gel precursor state during its decomposition/crystallization of the tetragonal ZrO$_2$ phase. Panel A: mass loss (black trace), heat flow (blue trace) versus the annealing temperature (red trace). Heating rate: 0.25°C min$^{-1}$. Panel B: mass spectrometer signals of CO$_2$ (m/z = 44, black), water (m/z = 15,16,17 and 18; green, dark yellow, magenta and lilac) and CO (m/z = 28; orange) including heat flow and annealing temperature. Panel C: mass spectrometer signals resulting from the decomposition of the alkyl groups (m/z = 58, 59 and 60) including annealing temperature.
3.4 Raman Spectroscopy

To finally gain spectroscopic insight into the phase formation, Raman spectra have been collected for various samples after different decomposition/crystallization and annealing treatments. The corresponding spectra are shown in Figure 10. Panel A highlights the experiments on pure tetragonal ZrO\textsubscript{2}, panel B those on the corresponding Y-stabilized phase. In accordance with literature-reported spectra, both the Raman spectra taken after crystallization at 400°C and after the corresponding annealing cycle match the typical fingerprints of the tetragonal structure found after annealing hydrous ZrO\textsubscript{2} precursors arising from chloride-containing solutions43,44. Note that group analysis predicts 6 Raman-active vibrational modes for tetragonal ZrO\textsubscript{2}, which have been also shown experimentally45,46. Figure 10 A, however, exhibits at least 10 distinguishible peaks. This could in principle be explained by the presence of a monoclinic ZrO\textsubscript{2} phase (from an eventual phase transformation, yielding 18 additional vibrational modes47), which has not been detected in
XRD measurements (cf. Figure 1). More likely is a symmetry breaking by disordering phenomena or hydrous compounds arising from the preparation process. As the course of the two spectra does not change considerably, we might infer a high structural stability of pure tetragonal ZrO$_2$ in this temperature regime. A slightly different behaviour has been observed for the corresponding Y-doped tetragonal ZrO$_2$ structure (Figure 10 B). Compared to the spectrum after crystallization, the one obtained after the annealing cycle to 1000°C exhibits much more details, especially in the region between 300 and 500 cm$^{-1}$. The red spectrum is in good agreement with those reported in literature for Y-doped ZrO$_2$48. Note that in order to explain the details found in the black spectrum of Figure 10 B, contributions from symmetry breaking and/or presence of hydrous compounds must also be assumed, as no monoclinic phase has been detected in the corresponding X-ray diffractograms, in close correlation with the experiments on pure tetragonal ZrO$_2$. This is highly likely, given the comparable preparation process.
Figure 10: Raman spectra collected on the pure tetragonal ZrO$_2$ (panel A) and the Y-stabilized ZrO$_2$ phase (panel B) after crystallization at 400°C and after corresponding second annealing cycles to 400°C and 1000°C, respectively.

4. Discussion

Preparation Aspects

As the phase stability and specific surface area is of paramount importance especially for the use as catalytic material or catalyst support, lots of effort has been placed in opening new preparation pathways to single-phase cubic, tetragonal and monoclinic ZrO$_2$ with a high specific surface area. Starting materials are usually solutions of zirconium/zirconiyl salts and
various alkoxide derivatives, which are hydrolyzed to obtain the corresponding oxide material. Following this routine, all three ZrO$_2$ polymorphic modifications could be obtained, albeit exhibiting different particle sizes and morphologies, structures and kinetic stabilities. Focusing on the tetragonal structure, as reasons for the enhanced kinetic stability of thermodynamically metastable tetragonal ZrO$_2$, intrinsic size effects (stabilizing the tetragonal structure below a critical particle diameter), presence of defects in the final oxide matrix or structural similarities between the amorphous precursor structure and tetragonal ZrO$_2$ species have been discussed. However, especially regarding zirconium alkoxide decomposition (but not limited to), the influence of the experimental conditions on the structural stability is significant and encompasses the chemical nature of the alkyl group, solvent, post-annealing temperature, oxygen and water partial pressure or pH-value, among others. However, for a useful the preparation routine, one major drawback remains: due to the inherent metastability of tetragonal ZrO$_2$, both the primary preparation of this structure as a single phase, as well as its structural stability upon annealing, or during its specific application, is far from being straightforward. Usually, either mixtures of tetragonal and monoclinic ZrO$_2$ (with the former usually as the major component) right after preparation or a partial or full transformation into the monoclinic structure upon annealing to 1000°C are reported. Inoue et al. state a stability range of the tetragonal structure from 300°C to 700°C. These authors also performed a thorough investigation of the influence of the alkyl group and the solvent on the resulting ZrO$_2$ structure and although single-phase tetragonal ZrO$_2$ resulted directly after preparation, annealing to 500°C without exception introduced varying amounts of monoclinic ZrO$_2$. Similar results, albeit at different temperatures, were also reported by Mazdiyasni et al. Comparable experimental results are obtained upon polymerization of zirconium alkoxide precursors. Collins et al. reported a time-dependent stability of tetragonal ZrO$_2$ at 900°C (for 12 h), before subsequent transformation into the monoclinic modification. Jung et al. reported the formation of tetragonal ZrO$_2$ (synthesized from
zirconyl chloride), structurally stable up to 900°C, synthesized at pH 10 and followed by prolonged treatment in the mother liquor at 100°C. Valuable input into the stability of the tetragonal ZrO$_2$ phase and its stability is also provided by the works of Stefanic et al. and related to the influence of the oxygen partial pressure and the presence of cationic and anionic stabilizers.24,29,31 Structural stability of the tetragonal ZrO$_2$ phase has been verified by high-temperature X-ray diffraction up to 1200°C.29 Two notable differences to the experimental features of our work should be noted. Firstly, the heating rate in the latter work amounted to 5°C min$^{-1}$, which is about 500 times faster than reported in the “slow” experiments in our work. This would in turn nicely fit to the kinetic limitations discussed here and would explain, why (except for the experiment up to 400°C), in our case for much lower heating rates increasing amounts of monoclinic ZrO$_2$ are observed. In case of higher heating rates, as e.g in the TEM, TGA or additional XRD experiments, no or only modest amounts of monoclinic ZrO$_2$ are observed.

More critical, however, appears to be the use of the zirconyl nitrate and chloride as precursor materials to prepare the tetragonal phase.24,29,31,43,44 Consequently, as remaining nitrate or chloride ions are known to additionally aid the stabilization of the tetragonal phase,27 the resulting samples might be better viewed as representatives of doped or externally ionically stabilized tetragonal ZrO$_2$ phases.

Overview of phase transformations from tetragonal to monoclinic ZrO$_2$

Mixtures of tetragonal and monoclinic ZrO$_2$ phases have been explicitely stated by Chang et al. (following a sol-gel hydrolyzation synthesis method starting from ZrCl$_4$; phase transformation tetr. → mon. at 550°C),27 Srinavasan et al. (starting from ZrCl$_4$; phase transformation tetr. → mon. at 500°C),28 Mazdiyasni et al. (starting from Zr alkoxide precursors; phase transformation tetr. → mon. at 300°C),15 Inoue et al. (starting from Zr n-propoxide; phase transformation tetr. → mon. at 450°C),18 Inoue et al. (starting from Zr n-
propoxide; phase transformation tetr. → mon. at 700°C, depending on organic solvent),16 Collins (starting from dibutoxy(acetylacetonato) zirconium, phase transformation tetr. → mon. during annealing to 700°C),19,21 Hertl (starting from Zr 1-propoxide; phase transformation tetr. → mon. during annealing to 500°C in air),49 Jung et al. (starting from zirconyl chloride; phase transformation tetr. → mon. during annealing to 500°C depending on the pH value and synthesis conditions)50 and Oleshko et al. (starting from Zr n-propoxide; phase transformation tetr. → mon. at 400°C).5 Especially the latter is a very important work, since it provides a detailed HRTEM study of an allegedly phase-pure, unstabilized tetragonal ZrO\textsubscript{2} phase. In this case, stabilization of the tetragonal structure is reported to be related to a particle size effect. An important factor in stabilization of the tetragonal modification also refers to the number of oxygen vacancies and surface hydroxyl groups during preparation. Dehydroxylation and deoxygenation are reported to generally favor the stabilization of the tetragonal phase.27

\textit{Discussion on the stability of the tetragonal ZrO\textsubscript{2} phase}

Putting these data into perspective of our own work, we might infer a combination of a particle size and vacancy effects, leading to enhanced stabilization of the tetragonal ZrO\textsubscript{2} phase. Regarding the particle size effect, the mean particle diameter up to about 100 nm is well in the range of that reported by Oleshko et al. being necessary for stabilization of tetragonal ZrO\textsubscript{2}.5 Additionally, the chosen preparation pathway ensures that at the beginning of the precipitation of the gel pre-cursor, small particles with an associated high density of defects are present, also aiding the stabilization. The further fate of the tetragonal phase is in due course very much dominated by kinetic limitations. Unfortunately, in most literature-reported cases, the heating or annealing rates are not explicitly stated, rendering a direct comparison of the dependence on the kinetics of phase transformation difficult. If stated, as
e.g. in the paper by Stefanic et al.24, the results clearly corroborate the stability characteristics stated here. We note, that also related to the kinetics of phase transformation, the amount of monoclinic ZrO\textsubscript{2} without exception drastically increases upon re-cooling to room temperatures from 10-20\% up to about 80\%. Similar observations have also been made by Stefanic et al.25 who additionally concluded, that oxygen aids the transformation, since samples cooled \textit{in vacuo} and finally exposed to air at room temperature exhibited a much higher amount of tetragonal ZrO\textsubscript{2} compared to samples cooled down in air. Additionally, we might also infer an influence of stress relief during heating and cooling. The phase transformation from tetragonal to monoclinic ZrO\textsubscript{2} is for long known to be associated with the appearance of distinct cracks in the structure, along which the phase transformation predominantly proceeds.2 Consequently, we might on the one hand relief stress at higher temperatures due to thermal healing of these defects, on the other hand, upon re-cooling, the stress is finally relieved by accelerated transformation into the thermodynamically more stable monoclinic structure. This has been investigated also recently by theoretical phase-field modeling.51 These calculations also suggest the experimentally observed slowing down of the phase transformation at higher annealing temperatures, as shown in Figures 2 and 3. Also this behavior could be explained by the above-discussed thermal healing of stress at higher temperatures (i.e. 800 and 1000°C), which is clearly absent at lower annealing temperatures (i.e. 600°C). As for the kinetics of the phase transformation from tetragonal to monoclinic ZrO\textsubscript{2}, isothermal experiments have been conducted by Zhu et al. for a number of tetragonal samples stabilized by 2 mol\% Y\textsubscript{2}O\textsubscript{3}52,53. In these works, the importance of oxygen vacancies has been stressed. In addition, these authors also observed a characteristically “nose”-shaped time-temperature-dependent curve, which essentially indicates that the transformation rate proceeds through a maximum at a distinct temperature, which has been determined to be 300°C. This is directly related to the work described herein, where also a characteristic temperature (i.e. 600°C) has been revealed, where the transformation rate particularly
accelerates. Note, however, that the major difference between the two works is the use of pure tetragonal vs. Y-stabilized ZrO$_2$.

_Stability of the tetragonal ZrO$_2$ phase under moist conditions_

A particular important topic, which is of paramount importance for the use as catalytic material, refers to the stability under moist conditions. This has been in detail only studied by Xie et al.,35 who found that tetragonal ZrO$_2$ under moist conditions undergoes a transformation to monoclinic ZrO$_2$ – at room temperature and as a consequence of energetic reasons due to adsorbed water. This, of course, would consequently exclude the use of tetragonal ZrO$_2$ from all reforming reactions (e.g. including methanol or methane). On top of that, the BET surface of this reported tetragonal ZrO$_2$ sample amounted to around 100 m2 g$^{-1}$, i.e. very small particles, well inside the stability range reported by other authors, were present.

In contrast, our tetragonal sample clearly not only persists the transformation to monoclinic ZrO$_2$, even under moist experimental conditions, but – as deduced from BET measurements – the specific surface area is lower by a factor of 10. This might indicate a higher stability for even larger particles. As a consequence, the influence of water also affects the re-cooling of the sample. Here, up to now, the oxygen partial pressure has been solely held accountable for the reduced stability if the sample was cooled in air. In the light of the results by Xie et al. and the data presented in this work, water must be equally considered as a potential source of phase transformation. This cannot be directly extracted from our work, since the stability both under dry and moist conditions has been only verified up to 420°C. This, however, is well in the temperature range of e.g. methanol reforming reactions. These considerations would consequently refer to all experiments, where re-cooling has been stated to proceed under ambient conditions.24
The effect of stability on characterization and application of tetragonal ZrO$_2$.

More critical, however, is that this discussed temperature- and time-dependent stability in turn poses great difficulties regarding characterization of the tetragonal phase. In that respect, a number of characterization studies of tetragonal ZrO$_2$ have been published, especially regarding adsorption of small probe molecules such as CO/CO$_2$ and the resulting surface acid/base surface properties$^{12-14,54}$. However, some of the so-called “pure” tetragonal ZrO$_2$ phases reported in these contributions are either stabilized with 3.5% SiO$_2$,13 or even 3% Y$_2$O$_3$ (despite named “pure tetragonal ZrO$_2$”)14,54. In some cases, the initial sample was clearly structurally pure tetragonal ZrO$_2$, but – despite annealing to 600°C – its structural integrity not reported after use.12 As a consequence, the chemical, structural, electronic and adsorption properties of the pure tetragonal ZrO$_2$ modification appear to be still *grosso modo* unknown.

5. Conclusions

This study shows the importance of not only adequate preparation techniques, but also the accurate control of post-preparation experimental conditions to access structurally stabilized pure oxidic materials. “Pure” in this respect refers to both the absence of possible obvious ionic stabilizers (such as nitrate or chloride, but also stabilizing cationic species) already in the precursor state and to the structural stability upon annealing/re-cooling. In due course, the stabilization of the tetragonal structure by Y itself is not an unexpected result. However, the chosen preparation routine by simultaneous precipitation of hydrous ZrO$_2$ and Y$_2$O$_3$ aerogels and the subsequent apparent formation of an Y-doped amorphous aerogel, finally yielding Y-stabilized tetragonal ZrO$_2$, is important insofar as it allows both a very simple chemical pathway to this oxide polymorph and the possibility to directly compare essentially pure and Y-doped tetragonal ZrO$_2$. Thus, this will eventually reveal different materials or adsorption properties and would allow to also judge literature-reported data and assess the influence of a
potentially unwanted introduction of monoclinic ZrO₂. Particular importance in oxide chemistry refers to the chemical state of the surface, steering adsorption properties and obviously also crucially influencing the stability of bulk structures, at least in the ZrO₂ system. Therefore, accurate control of especially the hydroxylation degree of the surface is of paramount importance and needs to be separately assessed in future directional in-situ FT-IR spectroscopy experiments. This especially refers to the influence of water and clarifying, which experimental parameter exactly triggers the transformation into the monoclinic structure upon re-cooling the tetragonal ZrO₂ phase, which was calcined at very high temperatures (T ≥ 600°C). As we have shown the preparation of a chemically pure, structurally stable tetragonal ZrO₂ phase, which can now be in detail characterized up to temperatures of ~ 450°C, future work will reveal the intrinsic structural, electronic, adsorption and catalytic properties of pure tetragonal ZrO₂, in comparison to both monoclinic and Y-stabilized ZrO₂.

Acknowledgements
We thank the FWF (Austrian Science Foundation) for financial support under project F4503-N16. All experiments have been performed within the framework of the platform “Advanced Materials” at the University of Innsbruck. We are indebted to K. Pfaller for assistance with Scanning Electron Microscopy.

Supporting Information available:
Chemical analysis, exemplary Rietveld analysis and X-ray diffraction patterns, as well as scanning electron microscopic images and SAED analysis are provided in Tables S1-S2 and in Figures S1-S5. This material is available free of charge via the internet at http://pubs.acs.org.
Author information

*Corresponding author: S. Penner, Tel: 004351250758003 Fax: 004351250758199, simon.penner@uibk.ac.at
References

(14) Bolis, V.; Magnacca, G.; Cerrato, G.; Morterra, C. *Thermochimica Acta* **2001**, *379*, 147–161

(36) BRUKER AXS (2013): DIFFRAC^{plus} EVA, Version 19; Bruker AXS, Karlsruhe, Germany.

(43) Mercera, P.D. L.; Van Ommen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.; Ross, J. R.

(44) Srinavasan, R.; Harris, M. B.; Simpson, S. F.; DeAngelis, R. J.; Davis, B. H J. Mater.
Res. 1988, 3, 787–797

(45) Ishigame, M.; Sakurai, T. J. Am. Ceram. Soc. 1977, 60, 367-369

(46) Kumar, S.; Bhunia, S.; Ojha, A.K. Physica E: Low-dimensional Systems and
Nanostructures, 2015, 66, 74-80

2006, 60, 1170-1173

(49) Hertl, W. Langmuir 1989, 5, 96–100

Pure tetragonal ZrO$_2$, prepared via an zirconium alkoxide precursor, but without the addition of external stabilizers shows enhanced kinetic stability in the temperature range $T \leq 400^\circ$C and persists the transformation into the monoclinic ZrO$_2$ polymorph even under moist conditions. This enables for the first time the characterization of its intrinsic structural, electronic, adsorption and catalytic properties, in comparison to both monoclinic and Y-stabilized ZrO$_2$.