Stürze beim Bergwandern und deren Risikofaktoren: eine Fall-Kontroll-Studie

Masterarbeit
zur Erlangung des akademischen Grades Master of Science

Leopold-Franzens-Universität Innsbruck
Institut für Sportwissenschaft

Lukas Reimann

Assoz. Prof. Mag. Dr. Faulhaber Martin

25.08.2020
Inhaltsverzeichnis

ABKÜRZUNGSVERZEICHNIS .. 3

ZUSAMMENFASSUNG .. 4

ABSTRACT ... 4

EINLEITUNG ... 6

METHODIK .. 11

ALLGEMEINES STUDIENDESIGN ... 11
DATENQUELLE FÄLLE ... 11
DATENQUELLE KONTROLLEN ... 15
DATENERHEBUNG: FRAGEBOGEN .. 16
STATISTIK ... 17

ERGEBNISSE .. 19

RISIKOFAKTOREN IN DER GESAMTGRUPPE ... 19
GESCHLECHTSSPEZIFISCHE RISIKOFAKTOREN ... 23
GESCHLECHTSSPEZIFISCHE CHARAKTERISTIKA DER UNFALLOPFER ... 30

DISKUSSION ... 34

ALLGEMEINE, NICHT-MODIFIZIERBARE RISIKOFAKTOREN .. 34
ALLGEMEINE, MODIFIZIERBARE RISIKOFAKTOREN ... 35
GESCHLECHTSSPEZIFISCHE, NICHT-MODIFIZIERBARE RISIKOFAKTOREN 41
GESCHLECHTSSPEZIFISCHE, MODIFIZIERBARE RISIKOFAKTOREN 42

LIMITATIONEN ... 49

CONCLUSIO ... 50

AUSBlick ... 51

LITERATURVERZEICHNIS .. 52

DANKSAGUNG .. 59

ANHANG ... 60
Abkürzungsverzeichnis

BMI .. Body Mass Index
\(d\) .. Cohens \(d\)
ID-Nummer ... Identifikationsnummer
KI ... Konfidenzintervall
RTI ... risk taking inventory
SD .. Standardabweichung
WHO ... World Health Organization
z.B. ... zum Beispiel
\(\phi\) ... Phi-Koeffizient
Zusammenfassung

Die steigende Anzahl an Bergtouristen mit unterschiedlichem Erfahrungsgrad und Leistungsniveau lässt die Unfallzahlen steigen. Laut Erhebungen in den österreichischen Bergen ereignen sich jährlich rund 1500 Unfälle beim Bergwandern. Stürze sind für ungefähr 50% aller tödlichen und nicht-tödlichen Unfälle während dem Bergwandern verantwortlich. Ziel dieser Studie war es daher, allgemeine und spezifische Unfallrisikofaktoren beim Bergwandern zu erheben. Die vorliegende Studie wurde als Fall-Kontroll-Studie mit retrospektiven Fall-Daten von Wanderunfällen aus den Jahren 2016 bis 2018 konzipiert. Die Daten (Unfallgruppe: n = 405, Kontrollgruppe: n = 413) wurden mit einem standardisierten Fragebogen erhoben. Personen, die während dem Bergwandern stürzten, waren im Vergleich zur Kontrollgruppe zu einem größeren Anteil älter als 53 Jahre (60,3% vs. 36,1%, p < 0,001). Die verunfallten Personen wiesen im Durchschnitt häufiger einen BMI über 24 auf (42,2% vs. 32,5%, p = 0,040) und trugen durchschnittlich öfter einen Rucksack mit einem Gewicht über 4,5 Kilogramm bzw. ein relatives Rucksackgewicht über 6% des Körpergewichts (60% vs. 37,3%, p = 0,004 bzw. 50,3% vs. 30,7%, p = 0,041). Vor Beginn der Wandersaison sollen daher vor allem bei älteren und übergewichtigen Personen medizinische Untersuchungen zur Beurteilung der körperlichen Leistungsfähigkeit durchgeführt werden. Außerdem sollen Wanderer in Zukunft über den Zusammenhang zwischen einem hohen Rucksackgewicht und Stürzen beim Bergwandern aufmerksam gemacht werden. Weitere Studien zur Untersuchung von Risikofaktoren für Sturzunfälle beim Bergwandern müssen folgen, um Empfehlungen für die Prävention solcher Unfälle weitergeben zu können.

Abstract

The increasing number of mountain tourists with different levels of experience and performance levels increases the number of accidents. According to surveys in the Austrian mountains, around 1500 accidents occur while hiking in the mountains every year. Falls are responsible for approximately 50% of all fatal and non-fatal accidents while hiking. The aim of this study was therefore to collect general and specific accident risk factors when hiking in the mountains. The present study was designed as a case-control study, with retrospective case data from hiking accidents from 2016 to 2018. The data (accident group: n = 405, control group: n = 413) were collected using a standardized questionnaire. A larger proportion of
people who fell while hiking in the mountains were older than 53 years compared to the control group (60.3% vs. 36.1%, p <0.001). The accident victims more often had an BMI over 24 on average (42.2% vs. 32.5%, p = 0.040) and, on average, carried a backpack weighing more than 4.5 kg or a relative backpack weight over 6% of their body weight (60% vs. 37.3%, p = 0.004) or (50.3% vs. 30.7%, p = 0.041). Before the start of the hiking season, medical examinations to assess physical performance should be carried out, especially for older and overweight people. In the future, hikers should also be made aware of the excessive weight of hiking backpacks. Further studies on the investigation of risk factors for mountain hiking accidents caused by falls must follow in order to be able to pass on evidence-based recommendations for the prevention of mountain hiking accidents.
Einleitung

Neben den positiven Auswirkungen auf die Gesundheit bringen Alpinsportarten aber auch Gefahren und Risiken mit sich. Die konditionellen und koordinativen Anforderungen sind beim Bergwandern im Vergleich zum Wandern in der Ebene aufgrund von schmalen Bergpfaden und Bergsteigen sowie speziellen klimatischen Bedingungen, wie Kälte, Wind und Sauerstoffmangel, erhöht. Dies führt zu einem ansteigenden Verletzungsrisiko im alpinen Gelände [2]. Bergaufgehen erfordert viel mehr Energie und aerobe Leistungsfähigkeit als Gehen in der Ebene. Während die Sauerstoffaufnahme beim horizontalen Gehen mit 3 km/h ca. 10 ml/min/kg beträgt, steigt sie während dem Bergaufgehen bei einer Steigung von 15% mit gleicher Geschwindigkeit auf ca. 25 ml/min/kg an [6, 7]. Somit kommt es bei gleicher Geschwindigkeit zu einer deutlich höheren Beanspruchung und das Bergaufgehen wird im Vergleich zum Gehen in der Ebene schneller durch die individuelle Ausdauerleistungsfähigkeit limitiert [8].

Die Verletzungen nach einem Unfall können zum Verlust der Unabhängigkeit, zu Lähmungen, zu eingeschränkten Funktionen alltäglicher Aktivitäten, zur Verminderung des Gesundheitsstatus, zur frühen institutionellen Abhängigkeit oder sogar zum Tod führen [16, 17, 18, 19, 20, 21, 22].

Zu den Faktoren, die laut Studien zu Unfällen beim Bergwandern führen können, zählt unter anderem auch die Ermüdung [14, 31]. Die vordere Oberschenkelmuskulatur spielt bei der Bewegungskontrolle und beim Abbremsen von Kräften während dem Bergabgehen eine wichtige Rolle [32]. Durch die langandauernde, exzentrische Bewegung der Kniestreck-Muskulatur verlängert sich die Kraftproduktion. Aus diesem Grund kann längeres Bergabgehen zu Muskelschädigungen beziehungsweise zu Muskelkater führen [33]. Hierbei geht man von Mikroverletzungen der kontraktilen Elemente in den Sarkomeren aus [34],

Beeinträchtigte Sehkraft steht oft im engen Zusammenhang mit chronischen Erkrankungen [40]. Häufig werden den Betroffenen Medikamente verschrieben, um die Symptome von Krankheiten zu lindern. Dabei entsteht ein Zusammenhang zwischen Medikation und Stürzen bei älteren Personen außerhalb des Alpinsports. Untersuchungen zeigten, dass Multimedikation, insbesondere bei gleichzeitiger Einnahme von vier oder mehr Medikamenten, das Sturzrisiko erhöht [41].

Aktuelle Studien liefern wenig Informationen über die internalen und externalen Risikofaktoren beim Bergwandern. Wenn man Bergwandern mit einer anderen alpinen Sportart, wie beispielsweise dem Skifahren, vergleicht, findet man durchaus einige Parallelen. Die Abhängigkeit vom Material, die Ermüdung in den Beinen und das alpine Umfeld können Risikofaktoren, die Stürze begünstigen, darstellen. Die Studienlage zum alpinen Skisport ist im

Methodik

Allgemeines Studiendesign

Datenquelle Fälle

Die Datenbank der österreichischen Alpinpolizei wurde dem österreichischen Kuratorium für alpine Sicherheit zur Verfügung gestellt, um regelmäßige Unfallberichte abzugeben. Für die vorliegende Studie wählte das österreichische Kuratorium für alpine Sicherheit Unfälle aus, welche den folgenden Kriterien entsprachen: (1) nicht tödlich, (2) im Bundesland Tirol (ohne Osttirol), (3) der Tätigkeit „Wandern“ oder „Bergsteigen“ zugeordnet und (4) während der

Die österreichische Alpinpolizei erhielt regelmäßig Informationen über die Identifikationsnummern der ausgewählten Fälle. Dadurch konnten die Studienunterlagen in gedruckter Form per Post an die Opfer zugesandt werden. Die Unterlagen enthielten Informationen zu den Studienzielen und kooperierenden Institutionen. Ebenfalls wurden ein Teilnehmerinformations- und Einverständnisformular sowie der Fragebogen zur Datenerfassung beigelegt (für Details siehe Anhang). Die Personen wurden gebeten, die Einverständniserklärung zu unterschreiben sowie den Fragebogen auszufüllen und beide an das Institut für Sportwissenschaft zurückzusenden. Bei der weiteren Verarbeitung der Daten berücksichtigte man nur vollständig beantwortete Unterlagen. Für die endgültige Aufnahme in die Studie wurden die zurückgesandten Fragebögen überprüft, um festzustellen, ob die Unfälle den Kriterien (d.h. der Unfall musste während dem Bergwandern und primär durch einen Sturz passiert sein) entsprachen. Ein sturzbedingter Unfall galt dann als akzeptiert, wenn die Person während des Bergwanderns ausrutschte, stolperte oder sich verdrehte und folglich
stürzte (Stürze während des Aufenthalts auf einer Berghütte wurden z.B. nicht akzeptiert). Um Daten bei fehlenden oder mehrdeutigen Antworten im Fragebogen abklären bzw. ergänzen zu können, wurden die Studienteilnehmer per Email oder Telefon kontaktiert. Dieses Verfahren hat sich bereits in früheren Studien bewährt [12]. Das Flussdiagramm in Abbildung 1 zeigt einen Überblick über die einzelnen Vorgehensweisen zur Datenbeschaffung der Unfallopfer.
Abb. 1: Flussdiagramm zur Veranschaulichung der Datenbeschaffung der Unfallopfer, der Antworten der Teilnehmer und der Auswahl der endgültigen Stichprobengröße.

Die Daten der Kontrollgruppe wurden wie bei den Unfallopfern mit demselben standardisierten Fragebogen erhoben. Die Fragen zum Unfallhergang wurden jedoch entfernt (siehe Anhang). Zur Bestimmung des Rucksackgewichts kam eine Hängewaage (Firma Hanwell), die die Projektmitarbeiter bei sich trugen, zum Einsatz.

Um die erhobenen Daten weiterverarbeiten zu können, wurde der anonyme Fragebogen mit einer ID-Nummer ausgestattet. Jene ID-Nummer stimmte mit der entsprechenden Person aus den Unfallopfern überein. Die Kontrolldaten wurden nach erfolgreicher Erhebung an das Institut für Sportwissenschaft weitergeleitet und dort auf Richtigkeit und Vollständigkeit überprüft. Unvollständige und somit für die Auswertung nicht gebräuchliche Daten wurden aussortiert. So ergab sich die endgültige Stichprobengröße der Kontrollgruppe (n = 413).
Datenerhebung: Fragebogen

Der Fragebogen lehnte sich an vorangegangene Studien an, die sich mit Fragestellungen im Bergsport befassten [12, 31]. Zusätzlich wurden Experteninterviews herangezogen, um mögliche relevante Punkte, die aus den oben genannten Studien nicht hervorgingen, im Fragebogen zu ergänzen. Um Klarheit bezüglich dem Studiendesign und der statistischen Auswertung der Studie zu schaffen, wurde im Sommer 2015 vor Beginn der Untersuchung eine Pilot-Studie (n=5) durchgeführt.

Der Fragebogen beinhaltete folgende Aspekte (für Details siehe Anhang):

1. sozio-demografische Details (z.B. Alter, Geschlecht, Nationalität, Größe, Gewicht);
2. bestehende Erkrankungen (ja oder nein);
3. bekannte Sehschwäche, wie zum Beispiel Kurzsichtigkeit (ja oder nein);
4. Alkoholkonsum (ja oder nein) am Tag der Bergtour und in den vergangenen 48 Stunden;
5. Ermüdungsgrad zum Zeitpunkt des Unfalls: wahrgenommene Anstrengung zum Zeitpunkt des Unfalls auf einer numerischen Bewertungsskala von 0 (überhaupt keine Anstrengung) bis 10 (völlig erschöpft);
6. Muskelkater (ja oder nein);
7. generelles Risikoverhalten: drei Fragen zum subjektiven Risikoverhalten auf einer 5-stufigen Skala (1 = „stimme gar nicht zu“ bis 5 = „stimme sehr zu“); die Variable „Risikoverhalten Summe“ wurde aus den Mittelwerten der drei Antworten gebildet;
8. Verwendung eines Rucksacks (ja oder nein) und das Gewicht des Rucksacks (kg);
Statistik

Im Anschluss wurde eine binär-logistische Regressionsanalyse durchgeführt, um die Unfallwahrscheinlichkeit beim Bergwandern mit 95-prozentigem Konfidenzintervall zu schätzen. „Unfall“ (ja oder nein) stellte die abhängige, dichotome Variable für das Regressionsmodell dar. Die unabhängigen Variablen für das Regressionsmodell bildeten die Parameter, welche beim Chi-Quadrat-Test ein signifikantes Ergebnis erzielten. Das finale Regressionsmodell der Gesamtgruppe beinhaltete somit folgende unabhängige Variablen: „Alter“, „BMI“, „Rucksackgewicht“, „relatives Rucksackgewicht“, „Hände in Schlaufen“, „Alkohol gleicher Tag“, „Alkohol letzte 48h“, „Sehschwäche“ und „Muskellkater“.

Im dritten und letzten Abschnitt der Auswertung wurde untersucht, ob sich Geschlechtsunterschiede innerhalb der Unfallopfer herauskristallisierten. Für die intervallskalierten Daten wurden in diesem Teil der Auswertung keine Mediansplits durchgeführt. Die 14 Variablen aus der ersten und zweiten Phase der Untersuchung wurden mittels t-Test und Chi-Quadrat-Test untersucht.

Die Ergebnisse wurden als Mittelwerte mit Standardabweichungen, als absolute oder als relative Häufigkeiten mit Prozentangaben präsentiert. Die p-Werte wurden auf zweiseitige Signifikanz geprüft und Werte unter 0,05 wurden als statistisch signifikant angenommen.
Ergebnisse

Risikofaktoren in der Gesamtgruppe

Für die Bestimmung des Unfallrisikos beim Bergwandern wurden 14 Variablen in die statistische Auswertung miteinbezogen. Von diesen 14 Variablen zeigten neun ein signifikantes bzw. ein hoch-signifikantes Ergebnis. In der Tabelle 1 wird gezeigt, dass die Zahl der über 53-Jährigen bei den Unfallopfern im Schnitt höher war als bei den Kontrollpersonen (60,3% vs. 36,1%), $\chi^2(1) = 47.85, p < 0.001, \phi = 0.24$. Die Unfallopfer wiesen im Vergleich zur Kontrollgruppe durchschnittlich häufiger einen BMI über 23,9 auf (42,4% vs. 32,5%), $\chi^2(1) = 8.69, p = 0.003, \phi = 0.10$. Die Untersuchung der Variablen „Rucksackgewicht“ und „relatives Rucksackgewicht“ zeigte hoch-signifikante Ergebnisse, da die Unfallopfer im Durchschnitt öfter ein Gewicht über 4,5 Kilogramm bzw. ein relatives Rucksackgewicht über 6% des Körpergewichts mit sich trugen als die Kontrollpersonen (60% vs. 36,6%), $\chi^2(1) = 8.58, p = 0.003, \phi = 0.12$. Die Untersuchung der Variablen „Alkohol gleicher Tag“ und „Alkohol letzte 48h“ ergab ebenfalls einen signifikanten bzw. hoch-signifikanten Unterschied zwischen den Unfallopfern und den Kontrollpersonen (34% vs. 66%), $\chi^2(1) = 6.06, p = 0.014, \phi = 0.09$ bzw. (35% vs. 66%), $\chi^2(1) = 50.64, p < 0.001, \phi = 0.25$. Bei der Prüfung der Variable „Sehschwäche“ konnte genauso ein signifikanter Unterschied zwischen den beiden Gruppen festgestellt werden (70% vs. 60%), $\chi^2(1) = 9.76, p = 0.002, \phi = -0.11$. Die Kontrollpersonen gaben im Vergleich zu den Unfallopfern häufiger an, am Unfallort unter Symptomen eines Muskelkaters gelitten zu haben (15,5% vs. 4,7%), $\chi^2(1) = 25.95, p < 0.001, \phi = 0.18$.

Anschließend wurde mit jenen Variablen eine binär-logistische Regressionsanalyse durchgeführt, welche beim Chi-Quadrat-Test ein signifikantes Ergebnis lieferten. So wurden die Effekte der Variablen „Alter“, „BMI“, „Rucksackgewicht“, „relatives Rucksackgewicht“, „Hände in Schlaufen“, „Alkohol gleicher Tag“, „Alkohol letzte 48h“, „Sehschwäche“ und „Muskelkater“ auf das Ereignis „Sturz“ untersucht (Tabelle 1). Die Analyse ergab ein statistisch hoch-signifikantes Ergebnis, $\chi^2(9) = 118.3; p < 0.001$. Das Modell erklärte 30,1% der Varianz
(Nagelkerkes R^2) im Falle eines Sturzes und die Fälle wurden durch die Regression zu 69,5% richtig zugeordnet.

Die binär-logistische Regression zeigte ein statistisch signifikantes Ergebnis bei Personen, die über 53 Jahre alt waren ($p < 0,001$, $\text{EXP}(B) = 2,35$). Ein BMI über 24 erhöhte das Unfallrisiko beim Bergwandern ebenfalls signifikant ($p = 0,040$, $\text{EXP}(B) = 1,60$). Sowohl ein Rucksackgewicht über 4,5 Kilogramm ($p = 0,004$, $\text{EXP}(B) = 2,52$) als auch ein relatives Rucksackgewicht von mehr als 6% des Körpergewichts ($p = 0,041$, $\text{EXP}(B) = 2,01$) stellten statistisch signifikante Risikofaktoren für Stürze beim Bergwandern dar. Die Benützung von Wanderstöcken mit den Händen in den Schlaufen führte zu einer signifikanten Reduzierung des Risikos für Sturzunfälle beim Wandern im alpinen Gelände ($p < 0,001$, $\text{Exp}(B) = 0,42$). Ebenfalls konnte bei der Untersuchung der Variablen „Alkohol letzte 48h“ und „Muskelkater“ eine signifikante Verringerung des Sturzrisikos beim Bergwandern festgestellt werden ($p < 0,001$, $\text{Exp}(B) = 0,34$ bzw. $p = 0,002$, $\text{Exp}(B) = 0,31$).
Tab. 1: Unfallrisikofaktoren mit den statistischen Ergebnissen der Unfallopfer und der Kontrollgruppe.

<table>
<thead>
<tr>
<th></th>
<th>Unfallgruppe (n = 405)</th>
<th>Kontrollgruppe (n = 413)</th>
<th>Odds ratio (95% KI) univariat</th>
<th>p-Wert</th>
<th>Odds ratio (95% KI) multivariat</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter, > 53 Jahre (%)</td>
<td>244 (60,3)</td>
<td>149 (36,1)</td>
<td>2,69 (2,02–3,56)</td>
<td>< 0,001</td>
<td>2,35 (1,49–3,68)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Größe, > 172 cm (%)</td>
<td>176 (43,7)</td>
<td>205 (49,6)</td>
<td>0,79 (0,59-1,04)</td>
<td>0,088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewicht, > 72 kg (%)</td>
<td>204 (50,6)</td>
<td>188 (45,5)</td>
<td>1,23 (0,93-1,62)</td>
<td>0,145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI, > 24 (%)</td>
<td>171 (42,4)</td>
<td>134 (32,5)</td>
<td>1,54 (1,15-2,04)</td>
<td>0,003</td>
<td>1,60 (1,02-2,51)</td>
<td>0,040</td>
</tr>
<tr>
<td>Ermüdungsgrad, > 2 (%)</td>
<td>171 (42,5)</td>
<td>191 (46,3)</td>
<td>0,86 (0,65-1,14)</td>
<td>0,287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rucksackgewicht, > 4,5 kg (%)</td>
<td>189 (60,0)</td>
<td>119 (37,3)</td>
<td>2,52 (1,83-3,47)</td>
<td>< 0,001</td>
<td>2,52 (1,33-4,77)</td>
<td>0,004</td>
</tr>
<tr>
<td>Rel. Rucksackgewicht, > 6 % (%)</td>
<td>158 (50,3)</td>
<td>98 (30,7)</td>
<td>2,28 (1,65-3,16)</td>
<td>< 0,001</td>
<td>2,01 (1,03-3,92)</td>
<td>0,041</td>
</tr>
<tr>
<td>Risikoverhalten, > 4 (%)</td>
<td>116 (30,6)</td>
<td>129 (31,2)</td>
<td>0,97 (0,72-1,32)</td>
<td>0,866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hände in Schlaufen, ja (%)</td>
<td>123 (36,3)</td>
<td>132 (48,0)</td>
<td>1,62 (1,17-2,24)</td>
<td>0,003</td>
<td>0,42 (0,27-0,66)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Alkohol gleicher Tag, ja (%)</td>
<td>20 (33,9)</td>
<td>39 (66,1)</td>
<td>0,50 (0,29-0,88)</td>
<td>0,014</td>
<td>0,78 (0,33-1,89)</td>
<td>0,591</td>
</tr>
<tr>
<td>Alkohol letzte 48h, ja (%)</td>
<td>118 (34,5)</td>
<td>224 (65,5)</td>
<td>2,82 (2,11-3,77)</td>
<td>< 0,001</td>
<td>0,34 (0,22-0,53)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Sehschwäche, ja (%)</td>
<td>279 (69,6)</td>
<td>244 (59,1)</td>
<td>1,58 (1,19-2,12)</td>
<td>0,002</td>
<td>1,37 (0,86-2,17)</td>
<td>0,186</td>
</tr>
<tr>
<td>Muskelkater, ja (%)</td>
<td>19 (4,7)</td>
<td>64 (15,5)</td>
<td>3,71 (2,18-6,31)</td>
<td>< 0,001</td>
<td>0,31 (0,14-0,65)</td>
<td>0,002</td>
</tr>
<tr>
<td>Erkrankung, ja (%)</td>
<td>110 (27,7)</td>
<td>101 (24,5)</td>
<td>1,18 (0,86-1,62)</td>
<td>0,301</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Werte sind als absolute (relative) Häufigkeiten (%) der Unfallopfer und der Kontrollgruppe angegeben. Das allgemein lineare Modell wurde mittels t-Test oder Chi-Quadrat-Test durchgeführt. Angepasste odds ratios (und 95% Konfidenzintervall, KI) stammen von der binär-logistischen Regressionsanalyse.
Abb. 2.: Angepasste odds ratios (95% Konfidenzintervall) hinsichtlich der Prävalenz von modifizierbaren Sturzrisikofaktoren beim Bergwandern von Unfallopfern im Vergleich zu Kontrollpersonen.
Geschlechtsspezifische Risikofaktoren

Zur weiteren Untersuchung der Unfallrisikofaktoren beim Bergwandern wurden sowohl die Unfallopfer als auch die Kontrollgruppe nach Geschlecht getrennt. Um geschlechtsspezifische Unterschiede herausfinden zu können, wurden, wie in der Methodik beschrieben, 14 Variablen analysiert. Acht der 14 untersuchten Variablen des weiblichen Geschlechts zeigten im Chi-Quadrat-Test ein signifikantes Ergebnis. In der Tabelle 2 wird dargestellt, dass verunfallte Frauen im Schnitt häufiger über 52 Jahre alt waren als nicht-verunfallte Frauen (61,6% vs. 36,0%), χ²(1) = 27,2, p < 0,001, φ = 0,25. Frauen, die über 63 Kilogramm wogen und einen BMI über 22,8 aufwiesen, wurden signifikant häufiger bei den Unfallopfern als in der Kontrollgruppe beobachtet (56,5% vs. 41,1%), χ²(1) = 10,5, p = 0,001, φ = 0,15 bzw. (60,9% vs. 37,4%), χ²(1) = 24,5, p < 0,001, φ = 0,24. Verunfallte Frauen wanderten zu einem größeren Anteil mit einem Rucksackgewicht über 4 Kilogramm als nicht-verunfallte Frauen (49,7% vs. 24,7%), χ²(1) = 21,0, p < 0,001, φ = 0,26. Am Unfallort benutzten die weiblichen Personen aus der Kontrollgruppe signifikant häufiger die Schlaufen der Wanderstöcke als die verunfallten Frauen (46,9 vs. 35,6 %), χ²(1) = 4,4, p = 0,035, φ = 0,11. Die nicht-verunfallten Frauen konsumierten in den vergangenen 48 Stunden signifikant häufiger Alkohol als die weiblichen Unfallopfer (47,2 vs. 22,3 %), χ²(1) = 30,5, p < 0,001, φ = 0,26. Hinsichtlich der Variable „Sehschwäche“ gab es ebenfalls signifikante Unterschiede zwischen dem weiblichen Geschlecht der Unfallopfer und der Kontrollgruppe (70,9% vs. 56,1%), χ²(1) = 10,7, p = 0,001, φ = -0,16. Die Frauen aus der Kontrollgruppe gaben signifikant häufiger an mit einem Muskelkater gewandert zu sein als verunfallte Frauen (14,5% vs. 3,9%), χ²(1) = 15,2, p < 0,001, φ = 0,19.

Im Anschluss wurde ein binär-logistisches Regressionsmodell für die signifikanten Werte erstellt, um herauszufinden, ob die einzelnen Variablen Prädiktoren für Sturzunfälle beim Bergwandern darstellen (Tabelle 2). So wurden die Effekte der Variablen „Alter“, „Gewicht“, „BMI“, „Rucksackgewicht“, „Hände in Schlaufen“, „Alkohol letzte 48 Stunden“, „Sehschwäche“ und „Muskelkater“ auf das Ereignis „Sturz“ untersucht. Bei der Analyse wurde ein statistisch hoch-signifikantes Ergebnis festgestellt, χ²(8) = 75,8; p < 0,001. Das Modell erklärte 36,9% der Varianz (Nagelkerkes R²) im Falle eines Sturzes und die Fälle wurden durch die Regression zu 75,3% richtig zugeordnet.
Ein Alter über 52 Jahre stellte sich bei den Frauen als Risikofaktor für Sturzunfälle beim Bergwandern heraus (p = 0,009, EXP(B) = 2,42). Ein BMI über 22,8 mit einem p-Wert von 0,024 und einem EXP(B)-Wert von 3,09 wurde für das weibliche Geschlecht ebenso als signifikanter Sturzrisikofaktor beim Wandern erkannt. Wenn Frauen ein Rucksackgewicht über vier Kilogramm mit sich trugen, erhöhte sich das Unfallrisiko ebenfalls signifikant (p < 0,001, EXP(B) = 6,95). Wanderten Frauen jedoch mit den Händen in den Schlaufen ihrer Wanderstöcke, konnte eine signifikante Risikoreduzierung erreicht werden (p = 0,001, EXP(B) 0,30). Ebenso verringerte sich das Risiko zu stürzen, wenn weibliche Personen in den letzten 48 Stunden Alkohol konsumierten (p < 0,001, EXP(B) = 0,27). Frauen, die unter einer bekannten Sehschwäche litten, zeigten bei der Analyse der Variable ein höheres Sturzrisiko als weibliche Personen ohne bekannte Sehschwäche. Bei dieser Untersuchung wurde jedoch nur ein statistischer Trend festgestellt. (p = 0,054, EXP(B) = 1,96).
Tab. 2. Geschlechtsspezifische Unfallrisikofaktoren mit den statistischen Ergebnissen des weiblichen Geschlechts der Unfallopfer und der Kontrollgruppe.

<table>
<thead>
<tr>
<th>Unfallgruppe (n = 232)</th>
<th>Kontrollgruppe (n = 214)</th>
<th>Odds ratio (95% KI)</th>
<th>p-Wert</th>
<th>Odds ratio (95% KI)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>univariat</td>
<td></td>
<td>multivariat</td>
<td></td>
</tr>
<tr>
<td>Alter, > 52 Jahre (%)</td>
<td>143 (61,6)</td>
<td>2,75 (1,87-4,03)</td>
<td>< 0,001</td>
<td>2,42 (1,25-4,68)</td>
<td>0,009</td>
</tr>
<tr>
<td>Größe, > 167 cm (%)</td>
<td>105 (45,7)</td>
<td>0,78 (0,54-1,13)</td>
<td>0,190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewicht, > 63 kg (%)</td>
<td>130 (56,5)</td>
<td>1,86 (1,28-2,71)</td>
<td>0,001</td>
<td>0,83 (0,32-2,18)</td>
<td>0,703</td>
</tr>
<tr>
<td>BMI, > 22,8 (%)</td>
<td>140 (60,9)</td>
<td>2,61 (1,78-3,82)</td>
<td>< 0,001</td>
<td>3,09 (1,16-8,29)</td>
<td>0,024</td>
</tr>
<tr>
<td>Ermüdungsgrad, > 2 (%)</td>
<td>95 (41,3)</td>
<td>0,93 (0,64-1,36)</td>
<td>0,719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rucksackgewicht, > 4,0 kg (%)</td>
<td>86 (49,7)</td>
<td>3,02 (1,87-4,88)</td>
<td>< 0,001</td>
<td>6,95 (3,31-14,62)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Rel. Rucksackgewicht, > 5,9 % (%)</td>
<td>91 (52,9)</td>
<td>1,40 (0,89-2,18)</td>
<td>0,136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risikoverhalten, > 3 (%)</td>
<td>94 (43,9)</td>
<td>0,86 (0,59-1,26)</td>
<td>0,438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hände in Schlaufen, ja (%)</td>
<td>69 (35,6)</td>
<td>1,60 (1,03-2,48)</td>
<td>0,035</td>
<td>0,30 (0,15-0,59)</td>
<td>0,001</td>
</tr>
<tr>
<td>Alkohol gleicher Tag, ja (%)</td>
<td>9 (3,9)</td>
<td>0,63 (0,26-1,51)</td>
<td>0,294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkohol letzte 48h, ja (%)</td>
<td>51 (22,3)</td>
<td>3,12 (2,07-4,71)</td>
<td>< 0,001</td>
<td>0,27 (0,14-0,52)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Sehschwäche, ja (%)</td>
<td>164 (70,9)</td>
<td>1,92 (1,29-2,84)</td>
<td>0,001</td>
<td>1,96 (0,99-3,89)</td>
<td>0,054</td>
</tr>
<tr>
<td>Muskelkater, ja (%)</td>
<td>9 (3,9)</td>
<td>4,18 (1,94-9,00)</td>
<td>< 0,001</td>
<td>0,38 (0,12-1,27)</td>
<td>0,117</td>
</tr>
<tr>
<td>Erkrankung, ja (%)</td>
<td>51 (22,5)</td>
<td>0,90 (0,58-1,40)</td>
<td>0,649</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Werte sind als absolute (relative) Häufigkeiten (%) der Unfallopfer und der Kontrollgruppe des weiblichen Geschlechts angegeben. Das allgemein lineare Modell wurde mittels Chi-Quadrat-Test durchgeführt. Angepasste odds ratios (und 95% Konfidenzintervall, KI) stammen von der binär-logistischen Regressionsanalyse.
Abb. 3.: Angepasste odds ratios (95% Konfidenzintervall) hinsichtlich der Prävalenz von modifizierbaren Sturzrisikofaktoren beim Bergwandern von verunfallten Frauen im Vergleich zu nicht-verunfallten Frauen.

Beim männlichen Geschlecht zeigten ebenfalls acht von 14 Variablen ein signifikantes Ergebnis (Tabelle 3). Verunfallte Männer waren im Durchschnitt häufiger über 53 Jahre alt als nicht-verunfallte Männer (63,0% vs. 41,2%), $\chi^2(1) = 17,6, p < 0,001, \phi = 0,24$. Im Vergleich zum Rucksackgewicht der Männer aus der Kontrollgruppe wog das Rucksackgewicht der männlichen Unfallopfer signifikant häufiger über fünf Kilogramm (72,5% vs. 35,2%), $\chi^2(1) = 43,4, p < 0,001, \phi = 0,25$. Einen vergleichbaren Unterschied ergab die Prüfung des relativen Rucksackgewichts über 6,1% des Körpergewichts der Männer (69,0% vs. 36,4%), $\chi^2(1) = 33,2, p < 0,001, \phi = 0,24$. Die Männer aus der Kontrollgruppe wanderten signifikant häufiger mit den Händen in den Schlaufen der Wanderstöcke als die männlichen Unfallopfer (49,2% vs. 37,2%), $\chi^2(1) = 4,0 p = 0,045, \phi = 0,12$. Die Männer aus der Kontrollgruppe konsumierten signifikant öfter Alkohol am selben Tag als auch in den letzten 48 Stunden im Vergleich zu den männlichen Unfallopfern (13,1% vs. 6,4%), $\chi^2(1) = 4,6 p = 0,033, \phi = 0,11$ bzw. (61,8% vs. 39,4%), $\chi^2(1) = 18,4 p < 0,001, \phi = 0,22$. Nicht-verunfallte Männer gaben signifikant häufiger an beim Wandern an Symptomen eines Muskelkaters gelitten zu haben als männliche Unfallopfer (16,6% vs. 5,9%), $\chi^2(1) = 10,4 p = 0,001, \phi = 0,17$. Bekannte Erkrankungen
konnten signifikant öfter bei männlichen Unfallopfern als bei Männern aus der Kontrollgruppe festgestellt werden (34,7% vs. 24,7%), $\chi^2(1) = 4,4$ $p = 0,036$, $\phi = -0,11$.

Mit den signifikanten Werten wurde anschließend eine binär-logistische Regressionsanalyse durchgeführt, um die Unfallwahrscheinlichkeit beim Bergwandern mit 95-prozentigem Konfidenzintervall zu schätzen. Das finale Regressionsmodell der männlichen Gesamtgruppe beinhaltete somit folgende unabhängige Variablen: „Alter“, „Rucksackgewicht“, „relatives Rucksackgewicht“, „Hände in Schlaufen“, „Alkohol gleicher Tag“, „Alkohol letzte 48 Stunden“, „Muskelkater“ und „Erkrankung“. Die Analyse ergab ein statistisch hoch-signifikantes Ergebnis, $\chi^2(8) = 64,8$; $p < 0,001$. Das Modell erklärte 33,3% der Varianz (Nagelkerkes R^2) im Falle eines Sturzes und die Fälle wurden durch die Regression zu 71,2% richtig zugeordnet.

Das Alter über 53 Jahre stellte sich bei den Männern durch die binär-logistische Regression als signifikanter Prädiktor für Sturzunfälle beim Bergwandern heraus ($p = 0,009$, EXP(B) = 2,42). Das Rucksackgewicht über fünf Kilogramm wurde ebenfalls als ein signifikanter Sturzrisikofaktor für das männliche Geschlecht erkannt ($p = 0,021$, EXP(B) = 6,61). Sowohl der Alkoholkonsum in den letzten 48 Stunden als auch das Verspüren eines Muskelkaters reduzierten das Unfallrisiko der Männer während dem Bergwandern signifikant ($p = 0,009$, EXP(B) = 0,43 bzw. $p = 0,003$, EXP(B) = 0,19).
Tab. 3. Geschlechtsspezifische Unfallrisikofaktoren mit den statistischen Ergebnissen des männlichen Geschlechts der Unfallopfer und der Kontrollgruppe.

<table>
<thead>
<tr>
<th>Unfallgruppe (n = 173)</th>
<th>Kontrollgruppe (n = 199)</th>
<th>Odds ratio (95% KI)</th>
<th>p-Wert</th>
<th>Odds ratio (95% KI)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter, > 53 Jahre (%)</td>
<td>109 (63,0)</td>
<td>82 (41,2)</td>
<td>2,68</td>
<td>< 0,001</td>
<td>2,42</td>
</tr>
<tr>
<td>Größe, > 179 cm (%)</td>
<td>168 (97,2)</td>
<td>195 (97,9)</td>
<td>0,82</td>
<td>0,582</td>
<td></td>
</tr>
<tr>
<td>Gewicht, > 80 kg (%)</td>
<td>169 (97,7)</td>
<td>195 (97,9)</td>
<td>1,16</td>
<td>0,841</td>
<td></td>
</tr>
<tr>
<td>BMI, > 24,9 (%)</td>
<td>143 (82,7)</td>
<td>150 (75,4)</td>
<td>1,37</td>
<td>0,087</td>
<td></td>
</tr>
<tr>
<td>Ermüdungsgrad, > 2 (%)</td>
<td>76 (44,2)</td>
<td>99 (49,8)</td>
<td>0,80</td>
<td>0,284</td>
<td></td>
</tr>
<tr>
<td>Rucksackgewicht, > 5,0 kg (%)</td>
<td>103 (72,5)</td>
<td>61 (35,3)</td>
<td>2,84</td>
<td>< 0,001</td>
<td>6,61</td>
</tr>
<tr>
<td>Rel. Rucksackgewicht, > 6,1 % (%)</td>
<td>98 (69,0)</td>
<td>63 (36,4)</td>
<td>2,68</td>
<td>< 0,001</td>
<td>0,98</td>
</tr>
<tr>
<td>Risikoverhalten, > 4 (%)</td>
<td>104 (63,0)</td>
<td>117 (59,4)</td>
<td>1,08</td>
<td>0,479</td>
<td></td>
</tr>
<tr>
<td>Hände in Schlaufen, ja (%)</td>
<td>54 (37,2)</td>
<td>64 (49,2)</td>
<td>1,63</td>
<td>0,045</td>
<td>0,62</td>
</tr>
<tr>
<td>Alkohol gleicher Tag, ja (%)</td>
<td>11 (6,4)</td>
<td>26 (13,1)</td>
<td>2,20</td>
<td>0,033</td>
<td>0,67</td>
</tr>
<tr>
<td>Alkohol letzte 48h, ja (%)</td>
<td>67 (39,4)</td>
<td>123 (61,8)</td>
<td>2,49</td>
<td>< 0,001</td>
<td>0,43</td>
</tr>
<tr>
<td>Sehschwäche, ja (%)</td>
<td>115 (67,6)</td>
<td>124 (62,3)</td>
<td>1,27</td>
<td>0,285</td>
<td></td>
</tr>
<tr>
<td>Muskelkater, ja (%)</td>
<td>10 (5,8)</td>
<td>33 (16,6)</td>
<td>3,22</td>
<td>0,001</td>
<td>0,19</td>
</tr>
<tr>
<td>Erkrankung, ja (%)</td>
<td>59 (34,7)</td>
<td>49 (24,7)</td>
<td>0,62</td>
<td>0,036</td>
<td>1,12</td>
</tr>
</tbody>
</table>

Die Werte sind als absolute (relative) Häufigkeiten (%) der Unfallopfer und der Kontrollgruppe des männlichen Geschlechts angegeben. Das allgemein lineare Modell wurde mittels Chi-Quadrat-Test durchgeführt. Angepasste odds ratios (und 95% Konfidenzintervall, KI) stammen von der binär-logistischen Regressionsanalyse.
Abb. 4.: Angepasste odds ratios (95% Konfidenzintervall) hinsichtlich der Prävalenz von modifizierbaren Sturzrisikofaktoren beim Bergwandern von verunfallten Männern im Vergleich zu nicht-verunfallten Männern.
Geschlechtsspezifische Charakteristika der Unfallopfer

Um geschlechtstypische Unfallrisikofaktoren erheben zu können, wurden die Unfallopfer nach weiblichen (n = 232) und männlichen (n = 173) Geschlecht getrennt. Anschließend wurde für jeden Risikofaktor ein t-Test bzw. ein Chi-Quadrat-Test durchgeführt (Tabelle 4). Alle untersuchten sozio-demografischen Werte, außer die Variable „Alter“, zeigten ein hoch-signifikantes Ergebnis. Die verunfallten Frauen waren im Schnitt kleiner als die verunfallten Männer (166,3 ± 6,1 cm vs. 177,9 ± 6,2 cm), t(401) = -18,8, p < 0,001, d = 0,94. Bei der Analyse der Variable „Gewicht“ konnte festgestellt werden, dass die weiblichen Unfallopfer im Durchschnitt weniger wogen als die Männer derselben Gruppe (66,8 ± 10,9 kg vs. 81,3 ± 11,2 kg), t(401) = -13,0, p < 0,001, d = 0,65. Der Body-Mass-Index war bei den verunfallten Frauen signifikant geringer als bei den verunfallten Männern (24,1 ± 3,6 vs. 25,7 ± 3,1), t(401) = -4,5, p < 0,001, d = 0,22. Außerdem konnte bei der Untersuchung gezeigt werden, dass die männlichen Unfallopfer im Durchschnitt risikofreudiger wanderten als die verunfallten Frauen (4,8 ± 2,1 vs. 4,0 ± 1,6), t(377) = -4,2, p < 0,001, d = 0,22. Die weiblichen Unfallopfer wanderten durchschnittlich mit einem geringeren Rucksackgewicht als die verunfallten Männer (5,6 ± 4,2 kg vs. 6,9 ± 3,8 kg), t(313) = -3,0, p = 0,003, d = 0,17. Die Analyse der Variable „relatives Rucksackgewicht“ zeigte jedoch keinen signifikanten Unterschied zwischen weiblichen und männlichen Unfallopfern. Ein hoch-signifikantes Ergebnis ergab hingegen die Untersuchung des Alkoholkonsums. Verunfallte Männer gaben durchschnittlich häufiger an Alkohol in den letzten 48 Stunden vor dem Unfall konsumiert zu haben als verunfallte Frauen (39,4% vs. 22,3%), χ²(1) = 13,76, p < 0,001, φ = 0,19. Die Untersuchung der Variable „Erkrankung“ führte ebenfalls zu einem statistisch signifikanten Ergebnis. Dabei waren es die männlichen Unfallopfer, die häufiger an einer bekannten Erkrankung litten als die weiblichen Personen derselben Gruppe (34,7% vs. 22,5%), χ²(1) = 7,27, p < 0,007, φ = 0,14.
Tab.4: Geschlechtstypische Unfallrisikofaktoren beim Bergwandern: Unfallopfer getrennt nach Geschlecht.

<table>
<thead>
<tr>
<th></th>
<th>Gesamt (n = 405)</th>
<th>Frauen (n = 232)</th>
<th>Männer (n = 173)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>56,2 (± 15,1)</td>
<td>55,5 (± 14,3)</td>
<td>57,0 (± 16,1)</td>
<td>0,335</td>
</tr>
<tr>
<td>Größe (cm)</td>
<td>171,3 (± 8,4)</td>
<td>166,3 (± 6,1)</td>
<td>177,9 (± 6,2)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>73,0 (± 13,1)</td>
<td>66,8 (± 10,9)</td>
<td>81,3 (± 11,2)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>BMI</td>
<td>24,8 (± 3,5)</td>
<td>24,1 (± 3,6)</td>
<td>25,7 (± 3,1)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Ermüdungsgrad (0-10)</td>
<td>2,4 (± 2,2)</td>
<td>2,4 (± 2,3)</td>
<td>2,5 (± 2,2)</td>
<td>0,695</td>
</tr>
<tr>
<td>Rucksackgewicht (kg)</td>
<td>6,2 (± 4,1)</td>
<td>5,6 (± 4,2)</td>
<td>6,9 (± 3,8)</td>
<td>0,003</td>
</tr>
<tr>
<td>Relatives Rucksackgewicht (%/KG)</td>
<td>8,7 (± 5,9)</td>
<td>8,7 (± 6,6)</td>
<td>8,6 (± 4,7)</td>
<td>0,941</td>
</tr>
<tr>
<td>Risikoverhalten Summe (0-15)</td>
<td>4,4 (± 1,9)</td>
<td>4,0 (± 1,6)</td>
<td>4,8 (± 2,1)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Hände in Schlaufen, ja (%)</td>
<td>123 (36,3)</td>
<td>69 (35,6)</td>
<td>54 (37,2)</td>
<td>0,751</td>
</tr>
<tr>
<td>Alkohol gleicher Tag, ja (%)</td>
<td>20 (33,9)</td>
<td>9 (3,9)</td>
<td>11 (6,4)</td>
<td>0,257</td>
</tr>
<tr>
<td>Alkohol letzte 48h, ja (%)</td>
<td>118 (34,5)</td>
<td>51 (22,3)</td>
<td>67 (39,4)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Sehschwäche, ja (%)</td>
<td>279 (69,6)</td>
<td>164 (70,9)</td>
<td>115 (67,6)</td>
<td>0,471</td>
</tr>
<tr>
<td>Sehhilfe in Verwendung, ja (%)</td>
<td>184 (67,4)</td>
<td>107 (67,7)</td>
<td>77 (66,9)</td>
<td>0,894</td>
</tr>
<tr>
<td>Muskelkater, ja (%)</td>
<td>19 (4,7)</td>
<td>9 (3,9)</td>
<td>10 (5,8)</td>
<td>0,369</td>
</tr>
<tr>
<td>Erkrankung, ja (%)</td>
<td>110 (27,7)</td>
<td>51 (22,5)</td>
<td>59 (34,7)</td>
<td>0,007</td>
</tr>
</tbody>
</table>

Die Werte sind als Mittelwerte (± SD) oder absolute (relative) Häufigkeiten (%) der Unfallgruppe und separat für weibliche und männliche Unfallopfer angegeben. Der p-Wert gibt geschlechtsspezifische Unterschiede von den Unfallrisikofaktoren an.
Abb. 5: A) Relative Häufigkeit (%) einer bestehenden Erkrankung innerhalb der weiblichen Unfallopfer. B) Relative Häufigkeit (%) einer bestehenden Erkrankung innerhalb der männlichen Unfallopfer. Der Unterschied zwischen den beiden Geschlechtern ist signifikant, \(p = 0,007 \).

Abb. 6: A) Relative Häufigkeit (%) des Alkoholkonsums in den letzten 48 Stunden innerhalb der weiblichen Unfallopfer. B) Relative Häufigkeit (%) des Alkoholkonsums in den letzten 48 Stunden innerhalb der männlichen Unfallopfer. Der Unterschied zwischen den beiden Geschlechtern ist hoch-signifikant, \(p < 0,001 \).
Abb. 7: Unterschied zwischen den verunfallten Frauen und den verunfallten Männern hinsichtlich der Variable „BMI“. Die Werte sind als Mittelwerte (± SD) dargestellt. Der Unterschied zwischen den beiden Geschlechtern ist hoch-signifikant, \(p < 0,001 \).

Abb. 8: Unterschied zwischen den verunfallten Frauen und den verunfallten Männern hinsichtlich der Variable „Risikoverhalten Summe“. Die Werte sind als Mittelwerte (± SD) dargestellt. Der Unterschied zwischen den beiden Geschlechtern ist hoch-signifikant, \(p < 0,001 \).
Diskussion

Allgemeine, nicht-modifizierbare Risikofaktoren

Die Untersuchung der Körpergröße lieferte einen statistischen Trend (\(p = 0,088 \)). Die Kontrollpersonen wiesen im Durchschnitt häufiger eine Körpergröße über 172 Zentimeter auf als die Unfallopfer (49,6% vs. 43,7%). Zu einem vergleichbaren Ergebnis kam auch die Studie von Jones et al. [52]. In einer weiteren Studie wurde die Schrittlänge als möglicher Grund für das erhöhte Sturzrisiko angegeben [53]. Jones et al. (1988) fanden heraus, dass sich das Unfall-
bzw. Sturzrisiko erhöhte, wenn kleinere Menschen, die eine geringe Schrittlänge aufwiesen, mit größeren Personen wanderten. Die Autoren der Studie empfahlen, dass kleinere Menschen voran gehen und das Tempo bestimmen sollten, um Unfällen bestmöglich vorzubeugen. Vor allem kleineren Frauen, die mit ihrem Partner oder in einer Gruppe wanderten, wurde geraten vorne zu gehen, um zusätzliche Belastungen auf die untere Extremität vermeiden zu können [54].

Allgemeine, modifizierbare Risikofaktoren

Das Rucksackgewicht der Unfallopfer unterschied sich ebenfalls signifikant von den Kontrollpersonen \((p < 0,001)\). Die verunfallten Personen trugen im Schnitt häufiger einen Rucksack mit einem Gewicht über 4,5 Kilogramm als die Personen der Kontrollgruppe (60,0% vs. 37,3%). Somit stellte sich ein Rucksackgewicht über 4,5 Kilogramm als signifikanter Prädiktor für Sturzunfälle beim Bergwandern heraus \((p = 0,004, \text{EXP}(B) = 2,52)\). Ähnliche Ergebnisse lieferte die Variable „relatives Rucksackgewicht“. Das relative Rucksackgewicht der Unfallopfer lag signifikant häufiger über 6% des Körpergewichts als das relative Rucksackgewicht der Kontrollgruppe \((50,3\% \text{ vs. } 30,7\%, p > 0,001)\). Ein relatives Rucksackgewicht über 6% des Körpergewichts stellte sich somit ebenfalls als signifikanter Prädiktor für Sturzunfälle beim Bergwandern heraus \((p = 0,041, \text{EXP}(B) = 2,01)\). Die aktuelle Studienlage berichtet von einer niedrigeren Gangstabilität beim Gehen mit Zusatzgewicht im Vergleich zum Gehen ohne Zusatzlast \([59]\). Außerdem steigt die Kraftproduktion im Hüftgelenk mit zunehmendem Gewicht des Rucksacks an \([45]\). Dies würde auf längere Sicht eine gute Kraftausdauer der Hüftmuskulatur erfordern, um die Beinachse während dem Wandern stabil halten zu können. Steht diese körperliche Fitness jedoch nicht zur Verfügung, könnten Sturzunfälle die Folge sein. Deswegen kann davon ausgegangen werden, dass durch schwere Lasten oder durch schlecht ausbalancierte Rücksäcke, wie beispielsweise Rucksäcke mit heraushängenden Stöcken oder seitlich befestigte Flaschen, das Unfallrisiko steigt. Das Tragen von zusätzlichen Lasten steht außerdem im Zusammenhang mit einem erhöhten Risiko für Erkrankungen des Bewegungsapparats \([60]\). Laut den Ergebnissen einiger Studien, welche die Auswirkungen von Zusatzgewichten auf die Gelenksbelastungen der unteren Extremität untersuchten, stieg die Belastung der Gelenke umso höher, je mehr externe Lasten getragen wurden \([61, 62, 63]\). Zudem verschärften sich die Kräfte beim Bergabgehen. Laut Kuster et al. (1994) waren die Druckbelastungen vor allem auf das patellofemorale Gelenk sowie auf das Kniegelenk beim Bergabgehen weitaus größer als beim Gehen in der Ebene. Die Kräfte waren beim Abstieg teilweise drei- bis viermal höher als beim Gehen auf ebener Strecke \([61]\).

75% der Gesamtteilnehmer der Studie \((n = 614)\) gaben an, mit Wanderstöcken gewandert zu sein. Davon waren es 55% der Unfallopfer und 45% der Kontrollpersonen, die Wanderstöcke während dem Bergwandern in Verwendung hatten. Bei der Handhabung der Stöcke konnte ein signifikanter Unterschied zwischen der verunfallten und der nicht-verunfallten Gruppe festgestellt werden \((p = 0,003)\). Während 36% der Unfallopfer am Unfallort die Wanderstöcke

Die Untersuchung der beiden Variablen „Alkohol am gleichen Tag“ und „Alkohol in den letzten 48h“ ergab einen signifikanten bzw. einen hochsignifikanten Unterschied zwischen den Unfallopfern und den Kontrollpersonen (\(p = 0,014 \text{ bzw.} \ p < 0,001 \)). Die Kontrollgruppe konsumierte am gleichen Tag und 48 Stunden vor dem Passieren des Unfallortes häufiger Alkohol als die Unfallopfer (66,1% vs. 33,9% bzw. 65,5% vs. 34,5%). Das binär-logistische Regressionsmodell zeigte, dass der Alkoholkonsum in den vergangenen 48 Stunden das Unfallrisiko beim Bergwandern signifikant verringerte (\(p < 0,001, \exp(B) = 0,34 \)). Allem Anschein nach sollte man dieses Ergebnis mit Vorsicht genießen. Die Unfallopfer trauten sich womöglich nicht anzugeben, am gleichen Tag oder in den letzten 48 Stunden Alkohol konsumiert zu haben, da teilweise auch die Rückerstattung der medizinischen Kosten seitens

Geschlechtsspezifische, nicht-modifizierbare Risikofaktoren

Sowohl für Frauen als auch für Männer stellte das Alter über 52 bzw. über 53 Jahre ein Risikofaktor für Sturzunfälle beim Bergwandern dar (p = 0,009, EXP(B) = 2,42 bzw. p = 0,009, EXP(B) = 2,42). Bei beiden Geschlechtern waren die Unfallopfer im Vergleich zu den Personen aus der Kontrollgruppe durchschnittlich häufiger älter als 52 bzw. 53 Jahre (61,6% vs. 36,9%, p < 0,001 bzw. 63,0% vs. 41,2%, p < 0,001). Im fortgeschrittenen Alter stieg nicht nur das Risiko für Herzkreislauf-Erkrankungen und für plötzlichen Herztod [12], sondern es kam auch vermehrt zu einer Abnahme der neuromuskulären Kontrolle und der Kraftfähigkeit [34]. Obwohl niedrige Kraftwerte als Risikofaktoren für Stürze galten [75], ist es wahrscheinlich, dass eine Gleichgewichtsstörung einen stärkeren Risikofaktor für Stürze darstellt als eine niedrige Muskelkraft. Ca. 60% der Personen, die jährlich die Alpen besuchen, sind über 40 Jahre alt und ca. 15% sind über 60 Jahre alt [76]. Demnach sollten Frauen und Männer im höheren Alter neben moderatem Ausdauertraining auch Gleichgewichtstraining zur Sturzprophylaxe für Alltags- und Freizeitaktivitäten, wie zum Beispiel dem Bergwandern, durchführen.

Bei den verunfallten Frauen der vorliegenden Studie betrug die durchschnittliche Körpergröße 166,3 ± 6,1 cm und die verunfallten Männer waren im Schnitt 177,9 ± 6,2 cm groß (p < 0,001). Die Studie von Gale et al. (2018) stellte fest, dass mangelnde Gleichgewichtsfähigkeit nur bei Männern einen Risikofaktor für Stürze im Alltag darstellte. Die Gleichgewichtsfähigkeit wurde dabei mit dem Tandemstand gemessen (odds ratio = 1,23) [77]. Aufgrund der geringeren Körpergröße der Frauen und den daraus resultierenden kleineren Schritten, wäre es sinnvoll, Frauen vorne gehen zu lassen, wenn sie in der Gruppe oder mit ihrem Partner wandern. Dadurch könnten sie die Wandergeschwindigkeit wählen bzw. bestimmen und somit Stürze beim Bergwandern überwiegend verhindern. Männern sollte aufgrund ihres in der Regel höheren Körperschwerpunktes Gleichgewichtstraining empfohlen werden. So könnten sie sich bestmöglich auf die Wandersaison vorbereiten.
Geschlechtsspezifische, modifizierbare Risikofaktoren

Beide Geschlechter wanderten im Durchschnitt nicht sehr risikofreudig. Auf einer Skala von 0 bis 15 lag die subjektive Risikoeinschätzung der verunfallten Frauen knapp 44% und bei den nicht-verunfallten Frauen ca. 48% über dem Wert drei (p = 0,438). Beim den verunfallten Männern lag das subjektive Risikoverhalten zu 63% und bei den nicht-verunfallten Männern zu knapp 60% über dem Wert vier (p = 0,479). Demnach stellte das subjektive Risikoverhalten bei beiden Geschlechtern keinen Risikofaktor für Sturzunfälle beim Bergwandern dar. Dieses Ergebnis könnte mitunter durch die soziale Erwünschtheit der Antworten erklärt werden. Verunfallte Frauen und verunfallte Männer unterschieden sich aber hinsichtlich des Risikoverhaltens beim Bergwandern signifikant (p < 0,001). Verunfallte Männer wanderten im Durchschnitt risikofreudiger als verunfallte Frauen (4,8 ± 2,1 vs. 4,0 ± 1,6). Dieses Ergebnis ist mit dem Ergebnis der Studie von Ruedl et al. (2010) vergleichbar. Hier konnte herausgefunden werden, dass Männer im alpinen Skilauf risikobereiter agierten als Frauen [79]. In der Studie von Harris et al. (2006) wurde erklärt, dass das Risikoverhalten der Männer signifikant von der Schwere der zu erleidenden Verletzungen abhängte, während Frauen das Risiko unabhängig von der Schwere der Verletzung einschätzten [80]. Dies deutet darauf hin, dass Frauen die Gefahr in risikanten Situationen früher erkennen und somit besser einschätzen können.

22% der verunfallten und 47% der nicht-verunfallten Frauen gaben an, 48 Stunden vor der Bergwanderung Alkohol konsumiert zu haben (p < 0,001). 39% der verunfallten und 62% der nicht-verunfallten Männer konsumierten 48 Stunden vor der Wanderung Alkohol (p < 0,001). Bei beiden Geschlechtern kam es durch den Alkoholkonsum in den vergangenen 48 Stunden zu einer Reduktion des Sturzrisikos beim Bergwandern (p < 0,001, EXP(B) = 0,27 bzw. p = 0,009, EXP(B) = 0,43). Die relative Häufigkeit des Alkoholkonsums der letzten 48 Stunden innerhalb der Unfallgruppe zeigte einen signifikanten Unterschied zwischen den beiden Geschlechtern (p < 0,001). Während von den verunfallten Männern 39% angaben, in den vergangenen 48 Stunden Alkohol getrunken zu haben, so lag der Prozentanteil der verunfallten Frauen, die Alkohol in den letzten 48 Stunden konsumierten, bei 22%. Eine Studie aus Amerika berichtete, dass Männer im Monat durchschnittlich an zwölf verschiedenen Tagen Alkohol konsumierten und dabei im Schnitt zwei bis drei Getränke zu sich nahmen. Frauen dagegen konsumierten im Monat durchschnittlich an nur sechs unterschiedlichen Tagen Alkohol und nahmen dabei im Durchschnitt zwei Getränke zu sich [82]. Dennoch stand regelmäßiger Alkoholkonsum in positiven Zusammenhang mit einer erhöhten Lebensqualität bei älteren Frauen und Männern (72 ± 10 Jahre) [83]. Da wiederholt hoher Alkoholkonsum bei Frauen und bei Männern jedoch
in signifikanten Zusammenhang mit schädlichen Stürzen steht [84], soll im Sinne der Sturzprävention für ausreichende Aufklärung gesorgt werden. Vor allem Männer, die im Vergleich zu Frauen durch regelmäßigen und hohen Alkoholkonsum (> 27 Getränke pro Woche) ein höheres Risiko für Hüftfrakturen nach Stürzen aufweisen [85], sollten über die Korrelation von Alkoholkonsum und Sturzhäufigkeit aufmerksam gemacht werden.

Die verunfallten Frauen wogen zu einem größeren Anteil mehr als 63 Kilogramm als die nicht-verunfallten Frauen (56,5% vs. 41,1%, p = 0,001). Für die Männer, die über 80 Kilogramm wogen, ergab die Untersuchung kein signifikantes Ergebnis (97,7% vs. 97,9%, p = 0,841). Die geschlechtsspezifische Auswertung des Körpergewichts zeigte hingegen einen signifikanten Unterschied zwischen verunfallten Frauen und verunfallten Männern (66,8 ± 10,8 kg vs. 81,3 ± 11,2 kg, p < 0,001). Betrachtet man den geschlechtsspezifischen Body-Mass-Index der Unfallopfer und der Kontrollgruppe, so stellte sich heraus, dass die verunfallten Frauen zu einem größeren Anteil einen BMI über 23 aufwiesen als die nicht-verunfallten Frauen (60,9% vs. 37,4%, p < 0,001). Bei Frauen repräsentierte sich ein BMI über 23 als signifikanter Risikofaktor für Sturzunfälle beim Bergwandern (p = 0,024, EXP(B) = 3,09). Bei den Männern, die einen BMI über 25 aufwiesen, stellte sich lediglich ein statistischer Trend heraus (82,7% vs. 75,4%, p = 0,087). Innerhalb der Unfallgruppe unterschieden sich die Geschlechter signifikant hinsichtlich der Variable „BMI“ (p < 0,001). Bei den verunfallten Frauen lag der BMI-Wert im Durchschnitt bei 24,1 (± 3,6) und bei den verunfallten Männern bei 25,7 (± 3,1). Die Ergebnisse dieser Studie zeigten, dass sowohl verunfallte Frauen als auch verunfallte Männer im Durchschnitt knapp über deren Normalbereichen lagen. Eine Studie zur Prävalenz von Adipositas in den USA fand heraus, dass es mehr übergewichtige Frauen als Männer gab, wobei insbesondere die Anzahl an übergewichtigen Männern weiterhin anstieg (33,2% vs. 31,1%) [86]. Autoren einer anderen Studie aus Europa berichteten, dass die Prävalenz für Adipositas bei Frauen, die über 50 Jahre alt waren, größer war als bei Männern. Dagegen waren Männer im Vergleich zu Frauen häufiger übergewichtig [87]. Da Personen mit einem höheren Körpergewicht und BMI vermutlich weniger fit und eine geringere Bewegungserfahrung mit sich brachten, zeigten jene ein höheres Risiko sich zu verletzen als Personen mit einem niedrigeren BMI [52, 54]. Aus diesem Grund sollten bergbegeisterte Frauen und Männer auf ihre Gesundheit bzw. auf ihren Fitnesszustand achten, um das Sturzrisiko beim Bergwandern zu minimieren.
Während der Bergwanderung trugen mehr verunfallte Frauen ein Rucksackgewicht über vier Kilogramm als nicht-verunfallte Frauen (49,7% vs. 24,7%, p < 0,001). Ähnlich war der Unterschied zwischen den männlichen Unfallopfern und den nicht-verunfallten Männern beim Rucksackgewicht über fünf Kilogramm (72,5% vs. 35,3%, p < 0001). Für beide Geschlechter stellte sich ein Rucksackgewicht über vier Kilogramm bzw. über fünf Kilogramm als signifikanter Risikofaktor für Sturzunfälle beim Bergwandern heraus (p < 0,001, EXP(B) = 6,95 bzw. p = 0,021, EXP(B) = 6,61). Verunfallte Männer trugen im Durchschnitt ein signifikant höheres Rucksackgewicht beim Wandern als verunfallte Frauen (6,9 ± 3,8 kg vs. 5,6 ± 4,2 kg), p = 0,003). Relativiert man das Rucksackgewicht auf das Körpergewicht, dann verschwindet dieser Effekt wieder. Die aktuelle Studienlange zeigte, dass es ab einem Rucksackgewicht von 20% des Körpergewichts bereits zu Abweichungen der Rumpfhaltung bei Frauen während eines acht Kilometer-Marsches kam. Nebenbei nahmen die Unbequemlichkeit und die empfundene Anstrengung während der Wanderung zu. Die Autoren empfahlen somit, den Wanderrucksack von Frauen unter 30% des Körpergewichtes zu füllen, um Verletzungen zu vermeiden [88]. Eine andere Studie untersuchte die Auswirkungen des Tragens eines Rucksackes auf die Haltung und Muskelaktivität bei Männern während des Stehens. Die Autoren kamen zu dem Ergebnis, dass mit zunehmendem Rucksackgewicht die Aktivität des musculus rectus abdominis stieg. Dennoch wich der Schwerpunkt des Rumpfes vermehrt nach hinten ab. Ein Rucksack, der mit 20% des Körpergewichtes gefüllt war, verursachte die schwerwiegendsten Muskel- und Haltungsveränderungen, weshalb die Autoren empfahlen, das relative Rucksackgewicht bei Männern unter 20% des Körpergewichtes zu halten [89]. In der vorliegenden Studie betrug das relative Rucksackgewicht bei den verunfallten Männern im Durchschnitt 11% und bei den nicht-verunfallten Männern lag es bei 8% (p < 0,001). Das relative Rucksackgewicht der weiblichen Unfallopfer betrug 13% und bei den Frauen aus der Kontrollgruppe 10% (p = 0,001). Aufgrund dieser Ergebnisse ist zu raten, den Wanderrucksack mit Utensilien, die gesamt unter 10% des Körpergewichtes bzw. die bei den Männern unter sechs Kilogramm wiegen, zu füllen.

Beide Geschlechter wanderten beim Passieren der Unfallstelle im Durchschnitt nahezu gleich häufig mit den Händen in den Schlaufen der Wanderstöcke. Bei den Frauen waren es 30,7% und der Anteil bei den Männern betrug 31,7%. Sowohl bei den Frauen als auch bei den
Männern wanderte die Kontrollgruppe signifikant häufiger mit den Händen in den Schlaufen als die Unfallopfer (46,9% vs. 35,6%, p = 0,035 bzw. 49,2% vs. 37,2%, p = 0,045). Die Verwendung der Wanderstöcke mit den Händen in den Schlaufen konnte bei den Frauen das Unfallrisiko beim Bergwandern signifikant reduzieren (p < 0,001, EXP(B) = 0,30). Literatur zur richtigen Verwendung und zum optimalen Einsatzzeitpunkt der Wanderstöcke ist derzeit noch nicht vorhanden. Die Geschwindigkeiten sind beim Bergabgehen höher als beim Bergaufgehen [25] und dadurch kann die Sturzgefahr zunehmen. Deshalb ist Frauen und Männern zu empfehlen, beim Bergaufgehen mit den Händen in den Schlaufen der Wanderstöcke zu wandern, während sie die Hände beim Bergabgehen außerhalb der Schlaufen lassen sollten. Wie oben erwähnt, muss in diesem Bereich mehr Forschung betrieben werden, um exakte Aussagen über die richtige Verwendung und den optimalen Einsatz von Wanderstöcken treffen zu können.

Sowohl die nicht-verunfallten Frauen als auch die nicht-verunfallten Männer gaben signifikant häufiger an unter Symptome eines Muskelkaters gelitten zu haben als die Unfallopfer (14,5% vs. 3,9%, p < 0,001 bzw. 16,6% vs. 5,8%, p = 0,001). Beim männlichen Geschlecht reduzierte sich das Unfallrisiko beim Bergwandern durch das Verspüren eines Muskelkaters signifikant (p = 0,003, EXP(B) = 0,19). Wie bereits oben erwähnt, bestätigte die aktuelle Studienlage, dass Erschöpfung sowie Verletzungen der kontraktilen Elemente mitverantwortlich für Stürze beim Bergwandern sein konnten [35, 72]. Damit stimmen die hier dargestellten Ergebnisse nicht mit der aktuellen Studienlage überein. Weitere Untersuchungen müssen folgen, um genauere Aussagen über den Zusammenhang zwischen den Symptomen eines Muskelkaters und dem Sturzrisiko beim Bergwandern treffen zu können.

Die relative Häufigkeit einer bekannten Sehschwäche der weiblichen Unfallopfer unterschied sich signifikant von der der nicht-verunfallten Frauen (70,9% vs. 56,1%, p = 0,001). Die Variable „Sehschwäche“ zeigte keinen signifikanten Unterschied zwischen den verunfallten Frauen und den verunfallten Männern (70,9% vs. 67,6%, p = 0,471). Bei Pocecco et al. (2017) lag der Anteil der verunfallten Personen mit Sehschwäche bei 64% [44]. Für das weibliche Geschlecht stellte sich eine beeinträchtigte Sehkraft, wie beispielsweise Kurzsichtigkeit oder Weitsichtigkeit, als potentieller Prädiktor für Sturzunfälle beim Bergwandern heraus. Bei der Untersuchung dieser Variable zeigte sich ein statistischer Trend (p = 0,054, EXP(B) = 1,96). Andere Studien
Risikofaktoren beim Bergwandern

Folgende Faktoren werden mit einem erhöhten Sturzrisiko beim Bergwandern in Verbindung gebracht:

1. erhöhtes Alter (> 53)
2. erhöhter BMI (> 24)
3. erhöhtes Rucksackgewicht (> 4,5 kg)
4. bekannte Sehschwäche

Abb. 5: Warntafel zur Anbringung an Wanderwegen, Parkplätzen oder Hütten. Die Abbildung soll durch weitere Studien über Risikofaktoren beim Bergwandern ergänzt werden.
Limitationen

Conclusio

Zusammenfassend kann behauptet werden, dass neben demografischen Parametern, wie dem fortgeschrittenen Alter (53+) und einem erhöhten BMI (24+), auch externale Parameter, wie zum Beispiel ein Rucksackgewicht über 4,5 Kilogramm bzw. ein relatives Rucksackgewicht über 6% des Körpergewichtes, als Risikofaktoren für Sturzunfälle beim Bergwandern eingestuft werden konnten. Betrachtet man die beiden Geschlechter getrennt voneinander, so konnte festgestellt werden, dass sich eine bekannte Sehschwäche bei Frauen als potenzieller Risikofaktor für Sturzunfälle beim Bergwandern repräsentierte.

Ausblick

Literaturverzeichnis

[38] Sherrington C, Fairhall NJ, Wallbank GK, Tiedemann A, Michaeloff ZA, Howard K, Lamb SE. Exercise for preventing falls in older people living in the community. Cochrane database of systematic reviews 2019; (1).

Danksagung

Es wurden keine finanziellen Mittel zur Verfügung gestellt.
Anhang

1) Probandeninformation, Einverständniserklärung und Fragebogen der Unfallopfer

** Probanden-ID: **

BITTE IM VORFRANKIERTEM UMCSCHLAG AN UNS ZURÜCKSENDEN

Probandeninformation und Einverständniserklärung

Warum wird die Studie durchgeführt?

Wer darf an der Studie teilnehmen?
Bergwanderinnen und Berg wanderer, die sich während einer Tour in Tirol durch einen Sturz nichttödlich verletzt haben.

Wer führt die Studie durch?
Studi enleitung: Dr. Martin Faulhaber, Institut für Sportwissenschaft der Universität Innsbruck

Wie läuft die Studie ab?

Zum Vergleich werden nicht gestürzte Bergwanderinnen und Berg wanderer interviewt und zwar auf den gleichen Bergwandernungen, an denen sich die Unfälle ereigneten. Der Vergleich wird Informationen zu den Faktoren liefern, die mit einem erhöhten Sturzrisiko beim Berg wandern in Bezug stehen.

Risiko und Nutzenabwägung für die Studienteilnahme
Da es sich um eine Fragebogenerhebung handelt, ist die Teilnahme an dieser Studie mit keinem gesundheitlichen Risiko für die Studienteilnehmerinnen und Studienteilnehmer verbunden. Der Nutzen dieser Studie, wichtige Erkenntnisse für die spezifische Unfallprävention beim Bergwandern zu gewinnen, ist für einen großen Kreis an Personen von Bedeutung.

Datenschutz
Die Angabe Ihrer Kontaktdaten dient ausschließlich einer eventuellen Kontaktaufnahme durch unsere Studienmitarbeiterinnen und -mitarbeiter per Email oder Telefon, um Unklarheiten im ausgefüllten Fragebogen zu klären.

Bitte Seiten 1+2 NICHT abtrennen, Fragebogen folgt ab Seite 3

Freiwilligkeit

Einverständniserklärung
Ich habe die Probandeninformation und Einverständniserklärung gelesen und verstanden. Alle meine Fragen wurden beantwortet und ich habe zurzeit keine weiteren Fragen mehr. Sollten sich während der Studie Fragen ergeben, kann ich mich jederzeit an Herrn Dr. Martin Faulhaber (Institut für Sportwissenschaft der Universität Innsbruck, Fürstenweg 185, A-6020 Innsbruck, Tel. +43 (0)512 507-45893, martin.faulhaber@uibk.ac.at) oder die Mitarbeiter der Studie wenden.

Ich bestätige mit Angabe meiner Kontaktdaten und mit meiner Unterschrift, dass ich freiwillig und aus eigenem Interesse an dieser Studie teilnehme.

Meine Kontaktdaten:

Vorname, Nachname:

Postadresse:

Telefon und/oder Email:

 Ort, Datum, Unterschrift

Bitte Seiten 1+2 NICHT abtrennen. Fragebogen folgt ab Seite 3
Sehr geehrte Studienteilnehmerin, sehr geehrter Studienteilnehmer!

Herzlichen Dank, dass Sie sich bereiterklärt haben, unsere Studie zu unterstützen. Dieser Fragebogen besteht aus 42 Fragen und dient dazu, möglichst umfangreiche Daten zu den Umständen Ihres Bergwanderunfalls zu erheben.

Ihre Angaben werden streng vertraulich behandelt und anonym ausgewertet. Bitte nehmen Sie sich ausreichend Zeit, diesen Fragebogen auszufüllen und die offenen Fragen detailliert zu beantworten.

Fragebogen

Bitte Zutreffendes ankreuzen bzw. ausfüllen

I Persönliche Daten
1 Alter (Jahre): 4 Körpergröße (cm):
2 Geschlecht: 5 Körpergewicht (kg):
3 Nationalität:

II Angaben zur Bergwanderung, auf der sich der Unfall ereignet hat
6 Art der Bergwanderung (Zutreffendes ankreuzen)
 □ Tagestour
 □ Mehrtagestour ➔ Am wievielen Tag ereignete sich der Unfall:
7 Anzahl der zusätzlichen Gruppenteilnehmer/innen (getrennt nach Geschlecht angeben)
 Frauen: Männer:
8 Das Gruppentempo war höher als wenn ich alleine wandern würde: ja nein
9 Genauer Streckenverlauf (stichwortartig) der Bergwanderung bis zum Unfall:

10 Pausen (> 10 min.) während der Bergwanderung bis zum Unfall: ja nein
11 Flüssigkeitsaufnahme während der Bergwanderung in Liter:
12 Alkoholkonsum in den 48 Stunden vor dem Unfallzeitpunkt: ja nein
13 Alkoholkonsum am Unfalltag bis zum Unfallzeitpunkt: ja nein
III Angaben zum Unfall

14 Unfalldatum und Unfalluhrzeit:

15 Beschreibung des Unfallhergangs und der Unfallstelle (event. GPS-Koordinaten):

16 Sturzursache (Zutreffendes ankreuzen)

- Stolpern über Stein, Wurzel o.ä.
- Umknicken ohne Stolpern
- Ausrutschen auf Schnee oder Eis
- Ausrutschen auf Gras
- Ausrutschen auf Fels/Geröll
- Andere: ________________

17 Unfallgründe (Zutreffendes ankreuzen, Mehrfachnennung möglich)

- Vorbelastung bzw. Ermüdung
- Unachtsamkeit
- Zeitdrang (z.B. drohendes Gewitter)
- Schlechte Ausrüstung
- Andere: ________________

18 Verletzungen (stichwortartig; falls ärztl. Diagnosen vorhanden, bitte anführen oder beilegen):

4
IV Bergwandererfahrung und Risikoverhalten

19 Anzahl der Bergwanderungen in dieser Saison (seit 1. Mai):

20 Durchschnittliche Dauer einer Bergwanderung (Stunden):

21 Bergwandererfahrung (Zutreffendes ankreuzen)

- seit weniger als 1 Jahr (dies ist das 1. Jahr, in dem ich bergwandere)
- seit 1 bis 2 Jahren
- seit 3 bis 5 Jahren
- seit mehr als 5 Jahren

22 Subjektive Einschätzung des eigenen Bergwanderkönnens (Zutreffendes ankreuzen)

- Anfänger (nur leichte Bergwanderungen auf guten Wegen)
- Leicht fortgeschritten (bei guten Verhältnissen auch mittelschwere Touren)
- Fortgeschritten (regelmäßig anspruchsvolle Touren z.B. in felsigen Gelände)
- Experte (Offizielle Ausbildung: Bergführer, Bergwanderführer, oder ähnliches)

23 Generelles Risikoverhalten

Bitte kreuzen Sie auf der 5-stufigen Skala (von „Stimme gar nicht zu“ bis „Stimme sehr zu“) an, wie sie subjektiv Ihr Risikoverhalten beurteilen.

Beim Bergwandern war ich in Unfälle verwickelt, die durch mangelnde Vorsicht meinerseits verursacht wurden.

Ich denke, dass ich Bergwandern sehr behutsam, vorsichtig und vorausdenkend ausübe.

Meine Freunde und Tourenkollegen sind der Ansicht, dass ich beim Bergwandern zu viel riskiere.

Stimme gar nicht zu

1	2	3	4	5

Stimme sehr zu

| 1 | 2 | 3 | 4 | 5 |
V Regelmäßige sportliche und generelle körperliche Aktivität

Bitte geben Sie die Häufigkeit pro Woche und die jeweilige Dauer sportlicher Aktivität in Ihrer Freizeit an – getrennt für intensive und moderate sportliche Aktivitäten. Beziehen Sie sich dabei auf eine gewöhnliche Woche mit einer für die letzten 6 Monate durchschnittlichen Sportaktivität.

24 Intensive sportliche Aktivität (Atmung und Puls nehmen stark zu, keine Unterhaltung mehr möglich, z.B. Laufen, Fußball und Leistungssport)

Häufigkeit in einer gewöhnlichen Woche:
Durchschnittliche Dauer pro Sporteinheit (min):

25 Moderate sportliche Aktivität (Atmung und Puls nehmen nur leicht zu, Unterhaltung problemlos möglich, z.B. Radfahren in der Ebene, lockeres Schwimmen)

Häufigkeit in einer gewöhnlichen Woche:
Durchschnittliche Dauer pro Sporteinheit (min):

26 Häufigste praktizierte Sportarten (max. 3 Mehrfachnennungen):

27 Durchschnittliche körperliche Aktivität während der Arbeit bzw. bei alltäglichen Tätigkeiten (Zutreffendes ankreuzen)

- Sehr leicht (z.B. Schreibtischtätigkeit)
- Leicht (z.B. Kinderbetreuung, Postverteilung)
- Moderat (z.B. Reinigungsarbeiten, Küchenarbeiten, Zustelldienste)
- Schwer (z.B. schwere Liefer- und Montagearbeiten)

28 Körperliche/sportliche Aktivität während der Freizeit (Zutreffendes ankreuzen)

- Sehr leicht: eigentlich kaum körperlich aktiv.
- Leicht: Gehen, langsames Radfahren, leichte Gartenarbeiten 1-mal pro Woche
- Moderat: Gehen, langsames Radfahren, leichte Gartenarbeiten mindestens 1-mal pro Woche für 10 – 30 Minuten
- Aktiv: regelmäßige sportliche Aktivitäten öfter als einmal pro Woche (z.B. Nordic Walking, zügiges Radfahren oder andere Sportarten)
- Sehr aktiv: anstrengende sportliche Aktivitäten mehrmals pro Woche

65
VI Bestehende Erkrankungen und Medikamente

Bitte kreuzen an, ob bei Ihnen ärztlich diagnostizierte Erkrankungen (z.B. Bluthochdruck, vorrangigender Herzerkrankung) vorliegen und ob diese durch Medikamente behandelt werden. Bitte kreuzen des Weiteren an, ob Sie an einer Sehschwäche (z.B. Kurzsichtigkeit) leiden und ob Sie zum Unfallzeitpunkt eine entsprechende Sehhilfe (z.B. Gleitsichtbrille, Kontaktlinsen) getragen haben.

29 Bekannte Erkrankungen: ja welche:
hein

30 Medikamenteneinnahme: ja welche:
hein

31 Bekannte Sehschwäche: ja welche:
hein
Wenn JA Korrekturbrille Reine Lesebrille Gleitsichtbrille
Wenn JA Sehhilfe zum Unfallzeitpunkt in Verwendung: ja hein

32 Wie gut ist Ihre Sehkraft hinsichtlich des Erkennens von Gegenständen/Personen? (z.B. das Erkennen eines Freundes auf der gegenüberliegenden Straßenseite unter Verwendung Ihrer normalerweise getragenen Sehhilfe, falls benötigt)

Hervorragend 1 2 3 4 5 6 7 8 9 10 Sehr schlecht

VII Frühere Verletzungen und Bergwanderrunfälle

Bitte kreuzen Sie an, ob Sie in den letzten 2 Jahren Verletzungen des Bewegungsapparates (z.B. Knochenbrüche, Bänderissse) erlitten haben, die ärztlich versorgt werden mussten und ob zum Unfallzeitpunkt noch Beeinträchtigungen bestanden. Bitte kreuzen des Weiteren an, ob Sie in den letzten 2 Jahren beim Bergwandern einen Unfall erlitten haben.

33 Frühere Verletzungen: ja welche:
hein

34 Beeinträchtigungen:

35 Frühere Bergwanderrunfälle: ja welche:
hein

VIII Muskelkater/Schmerzen/Ermüdungsgrad

Bitte kreuzen Sie an, ob bei Ihnen zum Unfallzeitpunkt Muskelkater und/oder andere Schmerzen bestanden. Bitte geben Sie Ihren Ermüdungsgrad zum Unfallzeitpunkt auf der Skala von 0 bis 10 an.

36 Muskelkater: ja wo:
hein

37 Andere Schmerzen:

38 Ermüdungsgrad zum Unfallzeitpunkt (Zutreffendes ankreuzen):

Gar nicht müde 0 1 2 3 4 5 6 7 8 9 10 Total erschöpft
IX Ausrüstung

39 Getragenes Schuhwerk zum Unfallzeitpunkt (Zutreffendes ankreuzen)
- Lauf-/Turnschuh (geht nicht über Knöchel, weiche Sohle, auch Cross-Laufschuh)
- Flacher Wander-/Bergschuh (geht nicht über Knöchel, festere Profilsohle)
- Hoher Wander- bzw. Bergschuh (geht über Knöchel, festere Profilsohle)
- Steigeisenfester Bergschuh (harte Sohle, Aufnahme für Steigeisen mit Kippebel)
- Anderer Schuhtyp (z.B. Sandalen), bitte angeben:

40 Alter der Schuhe (Jahre):

41 Zum Unfallzeitpunkt verwendete Ausrüstung (Zutreffendes ankreuzen)
- Rucksack ➔ Gewicht (kg):
- Sonnenbrille
- Wanderstöcke ➔ Hände zum Unfallzeitpunkt in den Schlaufen
- Grödeins/Spikes/Leichtsteigeisen/Steigeisen oder ähnliches

X Unfallprävention
Bitte beschreiben Sie stichwortartig, ob und wie aus Ihrer Sicht Unfälle beim Bergwandern zu vermeiden wären.

42 Möglichkeiten der Unfallvermeidung:

EIN HERZLICHES DANKESCHÖN
FÜR IHRE UNTERSTÜTZUNG!
2) Fragebogen der Kontrollgruppe

Sehr geehrte Studienteilnehmerin, sehr geehrter Studienteilnehmer!

Herzlichen Dank, dass Sie sich bereiterklärt haben, unsere Studie zu unterstützen. Dieser Fragebogen besteht aus 37 Fragen und dient dazu, möglichst umfangreiche Daten zu Ihrer Bergwanderung zu erheben.

Ihre Angaben werden streng vertraulich behandelt und anonym ausgewertet. Bitte nehmen Sie sich ausreichend Zeit, diesen Fragebogen auszufüllen und die offenen Fragen detailliert zu beantworten.

Fragebogen

Bitte Zutreffendes ankreuzen [] bzw. ausfüllen []

I Persönliche Daten
1 Alter (Jahre): []
2 Geschlecht: []
3 Nationalität: []
4 Körpergröße (cm): []
5 Körpergewicht (kg): []

II Angaben zur Bergwanderung, auf der sich momentan befinden
6 Art der Bergwanderung (Zutreffendes ankreuzen)
 [] Tagestour
 [] Mehrstagentour → Am wievielten Tag befinden Sie sich heute: []
7 Anzahl der zusätzlichen Gruppenteilnehmer/innen (getrennt nach Geschlecht angeben)
 Frauen: []
 Männer: []
8 Das Gruppentempo ist höher als wenn ich alleine wandern würde: [ja] [nein]
9 Genauer Streckenverlauf (stichwortartig) der Bergwanderung bis jetzt:
 []
10 Pausen (> 10 min.) während der Bergwanderung bis jetzt: [ja] [nein]
11 Flüssigkeitsaufnahme während der Bergwanderung in Liter: []
12 Alkoholkonsum in den 48 Stunden vor jetzigen Zeitpunkt: [ja] [nein]
13 Alkoholkonsum am heutigen Tag bis zum jetzigen Zeitpunkt: [ja] [nein]
III Bergwandererfahrung und Risikoverhalten

14 Anzahl der Bergwanderungen in dieser Saison (seit 1. Mai):

15 Durchschnittliche Dauer einer Bergwanderung (Stunden):

16 Bergwandererfahrung (Zutreffendes ankreuzen)
 - seit weniger als 1 Jahr (dies ist das 1. Jahr, in dem ich bergwandere)
 - seit 1 bis 2 Jahren
 - seit 3 bis 5 Jahren
 - seit mehr als 5 Jahren

17 Subjektive Einschätzung des eigenen Bergwanderkönnens (Zutreffendes ankreuzen)
 - Anfänger (nur leichte Bergwanderungen auf guten Wegen)
 - Leicht fortgeschritten (bei guten Verhältnissen auch mittelschwere Touren)
 - Fortgeschritten (regelmäßig anspruchsvolle Touren z.B. in felsigen Gelände)
 - Experte (Offizielle Ausbildung: Bergführer, Bergwanderführer, oder ähnliches)

18 Generelles Risikoverhalten
 Bitte kreuzen Sie auf der 5-stufigen Skala (von „Stimme gar nicht zu“ bis „Stimme sehr zu“) an, wie subjektiv Ihre Risikoverhaltung beurteilen.

 Beim Bergwandern war ich in Unfälle verwickelt, die durch mangelnde Vorsicht meinerseits verursacht wurden.

 Ich denke, dass ich Bergwander sehr behutsam, vorsichtig und vorausdenkend ausübe.

 Meine Freunde und Tourenkollegen sind der Ansicht, dass ich beim Bergwandern zu viel riskiere.
IV Regelmäßige sportliche und generelle körperliche Aktivität
Bitte geben Sie die Häufigkeit pro Woche und die jeweilige Dauer sportlicher Aktivität in Ihrer Freizeit an – getrennt für intensive und moderate sportliche Aktivitäten. Beziehen Sie sich dabei auf eine gewöhnliche Woche mit einer für die letzten 6 Monate durchschnittlichen Sportaktivität.

19 **Intensive** sportliche Aktivität (Atmung und Puls nehmen stark zu, keine Unterhaltung mehr möglich, z.B. Laufen, Fußball und Leistungssport)
Häufigkeit in einer gewöhnlichen Woche:
Durchschnittliche Dauer pro Sporteinheit (min):

20 **Moderate** sportliche Aktivität (Atmung und Puls nehmen nur leicht zu, Unterhaltung problemlos möglich, z.B. Radfahren in der Ebene, lockeres Schwimmen)
Häufigkeit in einer gewöhnlichen Woche:
Durchschnittliche Dauer pro Sporteinheit (min):

21 Häufigste praktizierte Sportarten (max. 3 Mehrfachnennungen):

22 Durchschnittliche körperliche Aktivität während der Arbeit bzw. bei alltäglichen zu verrichtenden Tätigkeiten (Zutreffendes ankreuzen)
- Sehr leicht (z.B. Schreibtischtätigkeit)
- Leicht (z.B. Kinderbetreuung, Postverteilung)
- Moderat (z.B. Reinigungsarbeiten, Küchenarbeiten, Zustelldienste)
- Schwer (z.B. schwere Liefer- und Montagearbeiten)

23 Körperliche Aktivität während der Freizeit (Zutreffendes ankreuzen)
- Sehr leicht: eigentlich kaum körperlich aktiv.
- Leicht: Gehen, langsames Radfahren, leichte Gartenarbeiten 1-mal pro Woche
- Moderat: Gehen, langsames Radfahren, leichte Gartenarbeiten mindestens 1-mal pro Woche für 10 – 30 Minuten
- Aktiv: regelmäßige sportliche Aktivitäten öfter als einmal pro Woche (z.B. Nordic Walking, zügiges Radfahren oder andere Sportarten)
- Sehr aktiv: anstrengende sportliche Aktivitäten mehrmals pro Woche
V Bestehende Erkrankungen und Medikamente
Bitte kreuzen an, ob bei Ihnen ärztlich diagnostizierte Erkrankungen (z.B. Bluthochdruck, vorrangig angina Herzerkrankung, Zuckerkranzhaftigkeit) vorliegen und ob diese durch Medikamente behandelt werden. Bitte kreuzen des Weiteren an, ob Sie an einer Sehschwäche (z.B. Kurzsichtigkeit) leiden und ob Sie zum jetzigen Zeitpunkt eine entsprechende Sehhilfe (z.B. Gleitsichtbrille, Kontaktlinsen) tragen.

24 Bekannte Erkrankungen: ja welche: nein
25 Medikamenteneinnahme: ja welche: nein
26 Bekannte Sehschwäche: ja welche: nein
Wenn JA ☐ Korrekturbrille ☐ Reine Lesebrille ☐ Gleitsichtbrille Wenn JA ☐ Sehhilfe zum jetzigen Zeitpunkt in Verwendung: ja nein

27 Wie gut ist Ihre Sehkraft hinsichtlich des Erkennens von Gegenständen/Personen? (z.B. das Erkennen eines Freundes auf der gegenüberliegenden Straßenseite unter Verwendung Ihrer normalen/brillengetragenen Sehhilfe, falls benötigt)

Hervorragend 0 1 2 3 4 5 6 7 8 9 10 Sehr schlecht

VI Frühere Verletzungen und Bergwanderunfälle
Bitte kreuzen Sie an, ob Sie in den letzten 2 Jahren Verletzungen des Bewegungsapparates (z.B. Knochenbrüche, Bänderrisse) erlitten haben, die ärztlich versorgt wurden mussten und ob zum jetzigen Zeitpunkt noch Beeinträchtigungen bestanden. Bitte kreuzen des Weiteren an, ob Sie in den letzten 2 Jahren beim Bergwandern einen Unfall erlitten haben.

28 Frühere Verletzungen: ja welche: nein
29 Beeinträchtigungen: ja welche: nein
30 Frühere Bergwanderunfälle: ja welche: nein

VII Muskellästher/ Schmerzen/Ermüdungsgrad
Bitte kreuzen Sie an, ob Sie Ihnen zum jetzigen Zeitpunkt Muskelkater und/oder andere Schmerzen bestehen. Bitte geben Sie Ihren Ermüdungsgrad zum jetzigen Zeitpunkt auf der Skala von 0 bis 10 an.

31 Muskellästher: ja wo: nein
32 Andere Schmerzen: ja wo: nein
33 Ermüdungsgrad zum momentanen Zeitpunkt (Zutreffendes ankreuzen):

Gar nicht müde 0 1 2 3 4 5 6 7 8 9 10 Total erschöpft
VIII Ausrüstung

34 Getragenes Schuhwerk zum jetzigen Zeitpunkt (Zutreffendes ankreuzen)
 □ Lauf-/Turnschuh (geht nicht über Knöchel, weiche Sohle, auch Cross-Laufschuh)
 □ Flacher Wander-/Bergschuh (geht nicht über Knöchel, festere Profilsohle)
 □ Hoher Wander- bzw. Bergschuh (geht über Knöchel, festere Profilsohle)
 □ Steigeisenfester Bergschuh (harte Sohle, Aufnahme für Steigeisen mit Kippebel)
 □ Anderer Schuhtyp (z.B. Sandalen), bitte angeben: ____________________________

35 Alles der Schuhe (Jahre): __________________

36 Zum jetzigen Zeitpunkt verwendete Ausrüstung (Zutreffendes ankreuzen)
 □ Rucksack ➔ Gewicht (kg): __________________
 □ Sonnenbrille
 □ Wanderstöcke ➔ Hände in den Schlaufen: ja nein
 □ Grödeln/Spikes/Leichtsteigeisen/Steigeisen oder ähnliches

IX Unfallprävention

Bitte beschreiben Sie stichwortartig, ob und wie aus Ihrer Sicht Unfälle beim Bergwandern zu vermeiden wären.

37 Möglichkeiten der Unfallvermeidung:

EIN HERZLICHES DANKESCHÖN
FÜR IHRE UNTERSTÜTZUNG!