Zur Seitenansicht
 

Titelaufnahme

Titel
Ein Beitrag zur Bestimmung der Anrisslebensdauer geschweißter Bauteile / Robert Lang
VerfasserLang, Robert
Begutachter / BegutachterinLener, Gerhard ; Nussbaumer, Alain
GutachterLener, Gerhard
Erschienen2015
Umfang314 Seiten : Ill., graph. Darst.
HochschulschriftInnsbruck, Univ., Diss., 2015
Anmerkung
Zsfassung in engl. Sprache
Datum der AbgabeDezember 2015
SpracheDeutsch
Bibl. ReferenzOeBB
DokumenttypDissertation
Schlagwörter (DE)Ermüdung / Baustähle / high-cycle-fatigue / Laserscan / Lebensdauer / Anrisslebensdauer / geschweißte Bauteile
Schlagwörter (GND)Baustahl / Schweißnaht / Materialermüdung / Dauerschwingfestigkeit / Numerisches Verfahren
URNurn:nbn:at:at-ubi:1-3825 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Ein Beitrag zur Bestimmung der Anrisslebensdauer geschweißter Bauteile [39.94 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

Die vorliegende Arbeit beschreibt eine Methodik zur Klassifizierung von Schweißnahtverbindungen an niederfesten Baustählen in Bezug auf ihre Schwingfestigkeit unter Berücksichtigung der tatsächlichen geometrischen Verhältnisse. Die Methodik ist im Besonderen an numerische Gegebenheiten und Berechnungsweisen angepasst.

Dabei werden die maßgebenden Einflüsse der Schwingfestigkeit für geschweißte Bauteile, wie beispielsweise Kerbgeometrie und statistischer Größeneffekt, die zerstörungsfrei ermittelt werden können, berücksichtigt. Die untergeordneten hingegen, wie Eigenspannungen etc., die nicht ausreichend genau erfasst werden können, werden vernachlässigt.

Die Methode untersucht im ersten Schritt die Erfassung und Aufbereitung der Geometrie unter Berücksichtigung numerischer Problemstellungen. Die Erfassung erfolgt mittels eines Laserscansystems mit hoher Genauigkeit und Auflösung. Die so erfassten Punkte werden zu Oberflächennetzen trianguliert und mittels NURBS-Generierung zu vollständig tangentenstetigen Oberflächen angenähert, die wiederum strukturmechanisch keine Singularitäten verursachen. Diese so bearbeiteten Oberflächen werden zu geschlossenen Körpern gewandelt.

In einem zweiten Schritt werden die Kerbspannungen aufgrund äußerer schwingender Belastungen linear-elastisch mittels Finiter-Elemente-Methoden (FEM) ermittelt. Die Neuber'sche Mikrostützwirkung und die Ermittlung von fiktiven kerbwirksamen Spannungen werden durch eine numerisch angepasstere Form umgesetzt, indem das Spannungsfeld in der Nähe der höchsten Kerbspannung mittels eines impliziten Gradientenmodells, d.h. durch Beschreibung mittels einer Differentialgleichung, mitberücksichtigt wird. Die Anpassung des dafür maßgebenden Parameters wird näherungsweise mit anderen Mikrostützwirkungsmodellen an maßgebenden Systemen geeicht, jedoch auch durch eine Parameterstudie gestützt. Auf eine exakte Anpassung wird verzichtet, da die verschiedenen Ansätze erheblich voneinander abweichen. Andererseits schlägt sich ein geänderter Parameter lediglich in einer Translation der zu Grunde liegenden Wöhler-Kurve nieder, die hierfür getrennt ermittelt werden muss (siehe Schritt 3). Von Wichtigkeit ist, dass dieses Modell durch die numerische Umsetzung gut auf geometrisch komplexe Strukturen ohne besondere Benutzerinteraktion anwendbar ist.

In einem dritten Schritt wird der statistische Größeneffekt über die Anwendung eines Weibull-Modells auf der an der Oberfläche im zweiten Schritt berechneten fiktiven Kerbspannungen, erfasst. Im Gegensatz zum üblichen Ansatz wird nicht auf einen ähnlichen Versuchskörper Bezug genommen und dabei nur der relative Größeneffekt erfasst, sondern vielmehr dient dazu eine elementare Wöhlerlinie, die aus Versuchen rückgerechnet wird. Diese so bestimmte Wöhlerkurve ist frei von Einflüssen aus der Kerb- oder Versuchskörperform und kann damit nicht nur auf ähnliche Geometrien, sondern unter Anwendung dieser Methode prinzipiell auf beliebige Geometrien angewendet werden.