Zur Seitenansicht
 

Titelaufnahme

Titel
Decomposing factorization approaches / Daniel Pelisek
VerfasserPelisek, Daniel
Betreuer / BetreuerinnenZangerle, Eva
ErschienenInnsbruck, June 14, 2018
Umfang17 Seiten, 8 verschieden gezählte Seiten : Diagramme
HochschulschriftUniversität Innsbruck, Masterarbeit, 2018
Datum der AbgabeJuni 2018
SpracheEnglisch
DokumenttypMasterarbeit
Schlagwörter (DE)Context-Aware Recommender Systems / Collaborative Filtering / Matrix Factorization
Schlagwörter (EN)Context-Aware Recommender Systems / Collaborative Filtering / Matrix Factorization
URNurn:nbn:at:at-ubi:1-23203 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Decomposing factorization approaches [1.01 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

The aim of this master thesis is to investigate a set of context-aware recommendation approaches that rely on matrix factorization. In particular, we are interested in comparing not only the approaches as a whole, but, more importantly, their single components. For instance, many of those approaches in principle rely on Single Value Decomposition for computing a lower-dimensional representation of the users, items and ratings given within a recommender system. However, the SVD is e.g., varied slightly or the utilized modules (e.g., for computing the features of items to be recommended or for ranking the items) vary. Therefore, we are interested in decomposing the different recommendation approaches, analyzing and comparing them in detail and aim to develop novel combinations of modules that may contribute to improving recommender performance.

Statistik
Das PDF-Dokument wurde 14 mal heruntergeladen.