

Universitäts- und Landesbibliothek Tirol

Handwörterbuch des chemischen Theils der Mineralogie

1843 - 1845

Rammelsberg, Carl F.
Berlin, 1845

Υ

urn:nbn:at:at-ubi:2-3841

Von Säuren wird er wenig angegriffen.

Nach Hermann enthält dies wahrscheinlich vom Ural herstammende Mineral (sp. G. = 2,935):

		Sauerstoff.	
Kieselsäure	44,06	22,89	
Eisenoxyd	37,84	11,35	
Kalkerde	6,58	1,87)	
Talkerde	5,42	$\left. \begin{array}{c} 1,87 \\ 2,09 \end{array} \right\} 3,96$	
Kupferoxyd	1,36		
Wasser	4,70	4,18	
	99,96		

Das Kupferoxyd rührt von beigemengter Kupferlasur her. Da der Sauerstoff von R, Fe, Si und $\dot{H}=1:3:6:1$ ist, so erhält das Mineral den Ausdruck

$$\frac{\dot{C}a}{\dot{M}g}$$
 $\left\langle \ddot{S}i + \ddot{F}e\ddot{S}i + \dot{H}. \right\rangle$

Hermann im J. f. pr. Chem. XXXIV. 180.

Yttrotantalit.

Nach Hermann verhält sich der Y. vom Ilmengeb. bei Miask folgendermaßen:

Im Kolben decrepitirt er, wird braun und giebt etwas Wasser. Verhält sich sonst wie der von Ytterby. Sp. G. = 5,398.

		Sauerstoff.	
Tantalsäure	61,33		7,05
Yttererde	19,74	3,93	1
Eisenoxydul	7,23	1,64	
Manganoxydul	1,00	0,22	7,07
Kalkerde	2,08	0,58	
Uranoxydul	5,64	0,70	
Ër, Če, La, Ti, W	1,50		
Glühverlust	1,66		
	100.18		

Da der Sauerstoff der Säure und der Basen gleich groß ist, so hat der sibirische Yttrotantalit dieselbe Zusammensetzung wie der schwedische, nämlich R³Ta.

J. f. pr. Chem. XXXIII, 87.

Yttrotitanit.

Verändert sich beim Glühen sehr wenig; verhält sich v. d. L. wie Titanit, giebt außerdem Eisenreaktion.

Von Chlorwasserstoffsäure wird er unter Abscheidung von Titansäure und Kieselsäure zersetzt.

Nach qualitativen Versuchen von Scheerer (und A. Erd-mann) enthält dies Mineral von Buöe bei Arendal: Kieselsäure, Titansäure, Yttererde, Kalkerde, Eisenoxyd, Manganoxyd, Thonerde, Talkerde.

Poggend. Ann. LXIII, 459.

Zinkspath.

Die im Handwörterb. II. 294. angegebene Analyse von Smithson betrifft den Z. aus Sommersetshire. Eine Varietät aus Derbyshire gab: Zn 65,2; C 34,8.

Die theoretische Zusammensetzung von $\dot{Z}n\ddot{C}$ ist Zinkoxyd 1 At. = 506,59 = 64,81

Kohlensäure 1 - = $\frac{275,00}{781,59} = \frac{35,19}{100}$

Die für die Zinkblüthe hingegen:

Zinkoxyd 3 At. = 1519,77 = 71,28Kohlensäure 1 - = 275,00 = 12,89Wasser 3 - = 337,44 = 15,832132,21 = 100.

Zinkvitriol.

Die berechnete Zusammensetzung für ZnS+7H ist:

Zinkoxyd 1 At. = 506,59 = 28,22Schwefelsäure 1 - = 501,16 = 27,92Wasser 7 - = 787,36 = 43,761795,11 = 100.

Zinnkies.

Ich habe den Zinnkies von Zinnwald im Erzgebirge untersucht. Sp. G. = 4,506.