Universitäts- und
Landesbibliothek Tirol

Universitäts- und Landesbibliothek Tirol

A handbook of chemical manipulation
Williams, Charles Greville
London, 1857

Appendix

APPENDIX.

967. Production of high temperatures.-M. H. Sainte-Claire Deville* having been occupied for a considerable time with researches which involve the use of excessively high temperatures, has constructed two sets of apparatus for the purpose of enabling chemists to produce extreme heat with considerable economy of time and material. The first is a peculiar kind of lamp without a wick; the fuel is oil of turpentine; and, in order to effect complete combustion of the very large quantity of carbon contained in it, he sends a blast of air through the burner by means of bellows. The heat obtained is so intense, that a platinum wire of half a millimetre \dagger in diameter may be fused in the flame. Felspar becomes perfectly fluid, and even the emerald shows signs of fusion when heated in a small platinum crucible. The engraving, fig. 389, represents the apparatus on a scale of one-fifth the real size.

Fig. 389.

* Ann. de Chim. et de Phy . [3] xlvi. 182.
+ A table for the conversion of millimetres into inches will be found at the end of the volume.

968. The flask, D, is so arranged that by the aid of the tube, E D, the turpentine is retained at a constant level. The section, fig. 390, represents the burner and the contrivance by which the air is shut in ; it consists of a reservoir, K K, of stout copper, which communicates with the turpentine bottle, D , by means of the tube, H . The annular space, K K, is closed at the bottom by a circular copper tray, II, which is intended to hold water for the purpose to be described presently. The burner, KK, has on the side next the air-tube, P , a row of holes, eight in number, at S S; they may be from 3 to 4 millimetres in diameter. The lamp is surmounted by a loose copper dome, R , which is supported by a depression or groove on the top of the burner. At its upper part it is pierced with an aperture to allow of the egress of the flame. A chimney, 75 millimetres high, and somewhat conical, is cut away at its

Fig. 390.
 lower part, so as to form the large apertures seen at OO. These apertures permit a large quantity of air to pass. On the top of the chimney is to be placed the triangle of platinum, which supports the crucible to be heated.
969. The upper extremity of the pipe, $\mathrm{P} p$, has a jet attached, pierced with an aperture two and a quarter millimetres in diameter. This jet may be replaced by others, according to the size of the crucible to be heated. The aperture of the jet is placed 5 millimetres below the holes, SS. The tubes, $\mathrm{Q} q$ and $\mathrm{Q}^{\prime} q$ (which carry the air over the surface of the turpentine in the lamp), are united at their lower extremity into one tube, which is attached to the stopeock, U . The upper extremities of the tubes, $\mathrm{Q} q$ and $\mathrm{Q}^{\prime} q$, are seen to pass through the tray, II, ascending in the interior of the burner nearly to the top. The reservoir, Z, communicates with a pair of bellows of sufficient power to force air into the lamp with a pressure equal to that exerted by a column of mercury 7 or 8 centimetres in height.
970. The first operation, preparatory to using the lamp, is to establish the level of the turpentine by means of the tube, D, fig. 389. It is necessary that the lower extremity of D should be exactly 5 millimetres below the level of the apertures, S S, in order to prevent the turpentine in the burner from overflowing and becoming inflamed, which, although not presenting any danger, would cause some trouble.

To set the apparatus at work, water is to be poured into the tray or
cup, II, which latter is to heated with a lamp until it has boiled for some time, so as to heat the turpentine ; the stopcock, U, may then be partly opened and air sent in; at the same time a lamp-flame is brought near the holes, O O, to ignite the inflammable vapour. When the lighted vapour burns steadily, the stopcock, U , may be further opened, and the bellows are to be worked to their full power. In a few moments after the ignition of the vapour the stopcock, G, fig. 389. is to be opened. A few trials must be made to ascertain the conditions necessary for obtaining the maximum temperature. It is unnecessary to apply a lamp-flame to the water in the tray, I I, during the whole of the operation, as the heat of the combustion is more than sufficient for the purpose.
To extinguish the lamp, it is sufficient to close the stopcocks U and G*.
971. Forge for high temperatures.-M. Deville has also described an apparatus by means of which he has obtained very remarkable results, owing not only to the excessively high temperatures reached, but perhaps still more to the power of resistance to heat possessed by his vessels. The furnace described by him is, in principle, not very unlike that described by Faraday in his 'Chemical Manipulation.' It is proper to mention that the last-named philosopher distinctly mentions that it was want of sufficiently refractory vessels that prevented the full powers of his furnace from being employed. Pure platinum was melted many years ago by the blast-furnace belonging to the Royal Institution. That used by M. Deville, however, not only melted but even volatilized platinum in such quantity that, according to him, it must have entered into ebullition.

The furnace consists of a baked clay cylinder, E E, fig. 391, 18 centimetres in diameter, placed upon an iron plate, F F, pierced with holes at 000 , fig. 392. This plate rests upon a hemispherical cavity, B, which is placed in communication with the bellows by means of the tube seen in the engraving. M. Deville uses small pieces of cinder, free from clinkers, as fuel. To use the furnace, the crucible is placed on the centre of the iron plate, and is covered with ignited charcoal to the height of about 5 or 6 centimetres; the rest of the furnace is then filled up with pieces of coke or cinders of the size of nuts. As the heat rises on working the bellows, the descent of the fuel is assisted by means of an iron rod, and more fuel is to be added to keep the furnace full. During the whole time of the experiment the coals on the upper part of the furnace remain cold. The highest tem-

[^0]perature commences about 2 or 3 centimetres above the plate F , and extends upwards about 7 or 8 centimetres. Above this zone of elevated

Fig. 391.

Fig. 392.

temperature the heat decreases with excessive rapidity, the cooling being due to the transformation of carbonic acid into carbonic oxide, which gas, in M. Deville's apparatus, burns with a flame 2 metres long.
972. Crucibles for high temperatures.-M. Deville uses three kinds of crucibles for his blast-furnace, namely, lime, carbon, or alumina. The lime-crucibles are simply pieces of well-burned slightly hydraulic lime, A, fig. 391, shaped with a saw or knife into a prism 8 or 10 centimetres wide, and 12 or 15 centimetres high. If the utmost degree of heat is not required, the crucible containing the assay may be placed within another, D, fig. 391. Both the concentric crucibles have covers also made of lime. The bottom of the inner crucible should be 5 or 6 centimetres above that of the outer one. They are placed at once on the plate of the furnace, without the intervention of a piece of baked earth or tile as is usually recommended.
973. If the utmost degree of heat is required, only one crucible is to be used, the aperture made in it not exceeding 2 or 3 centimetres in diameter, and 5 or 6 deep.
974. In some experiments M. Deville uses crucibles made by means of the lathe from the graphite of gas-retorts. They must not exceed 1 decimetre in height, because the zone of maximum temperature does not reach above 8 centimetres.

When it becomes necessary to remove the sulphur, iron, silica, and alumina from these crucibles, they are to be placed in one made of clay, through the bottom of which a porcelain tube passes, and is well
luted with fire-clay softened with water and mixed with cow-hair. The crucible being heated to redness, a stream of chlorine is passed through to remove the impurities.

These carbon crucibles, B, fig. 393, are not heated directly, but are to be enclosed inside one of lime, A A, the space, C C, between the two being tightly packed with alumina which has previously been heated to whiteness. The lime crucible has a cover, D, fitted to it.
975. M. Deville also uses crucibles made of alumina. To make them, he takes some am-

Fig. 393.
 monia-alum, and, after exposing it to a temperature only just sufficient to expel the volatile matters, kneads the alumina so prepared with water and some alumina which has been heated to whiteness for a long time. The pasty mass is to be moulded into a shape, dried and burnt.
976. It is somewhat curious that platinum which has been melted by means of the furnace described, when hammered into foil does not effect the combination of hydrogen with oxygen.

If red oxide of manganese is mixed with charcoal from sugar, but in quantity insufficient for complete reduction, and the whole be heated in a lime-crucible, the metal is obtained in a single brittle button of a reddish colour like bismuth. The pulverulent metal, when heated a little above the ordinary atmospheric temperature, decomposed water, as has also been observed by M. Regnault. The button of metal was accompanied by crystals apparently of the formula $\mathrm{Mn}^{2} \mathrm{O}^{3}, \mathrm{CaO}$.
977. Oxide of chromium, heated with a quantity of carbon insufficient for complete reduction to a temperature sufficiently high to volatilize platinum, gave a melted mass, but not a button. The chromium thus prepared is so hard that it cut glass like a diamond, and if it were less brittle might be used for that purpose. Hydrochloric acid attacks chromium with facility, dilute sulphuric acid but slightly, and nitric acid, either strong or diluted, does not act upon it at all.
978. Nickel, when obtained in a pure button, was found to possess extraordinary ductility, and a tenacity greater than that of iron.

An iron and a nickel wire of the same diameter were tried with weights, and it was found that while 60 kilogrammes ruptured the first, it took 90 to break the second. See also § 780 .
979. Cobalt prepared from the oxalate and well fused was examined as to its physical properties, and it was ascertained that a wire of the same diameter as the iron and nickel ones mentioned above, required

115 kilogrammes to break it, consequently it is nearly twice as tenacious as iron.

Silica was partially, but not perfectly, fused in the Fig. 394. furnace.
980. Determination of vapour-densities at varying pressures.-In endeavouring to ascertain the constitution of certain hydrocarbons, I was led to determine the amount of influence exerted by pressure on the volumes of vapours. M. Regnault has occupied himself with the same subject, but the only notice I have seen of his experiments is in the extended memoir of M. Wurtz, "Sur les Ammoniaques composées." In that paper he gives tables of the vapour-densities of methylamine and ethylamine at varying temperatures and pressures. The experiments were made by M . Izarn, in Regnault's laboratory, with an apparatus not yet described, but made on the model of the eudiometer described at p. 325.
981. The instrument used by me is of the simplest character, and, when once constructed, is even easier to use than the ordinary apparatus of M. Gay-Lussac. A determination of a vapour-density at the pressure of the atmosphere can be made in half an hour, and at three pressures in one hour.
982. For this purpose the gas-jar, a b, fig. 394, is accurately graduated, and cemented at its lower extremity into a steel cap ending in a screw. The jar is only half the diameter at the lower end that it is at the upper; this is in order to make the effect of small pressures on the bulk of the gas more evident.
 The jar is to be filled with hot mercury, the airbubbles removed with a wire, and then inverted in the mercurial trough. The small glass globule containing the fluid is then passed underneath the edge of the jar, and rises to the top of the mercury. The steel foot, cd, fig. 394, must now be held under the surface of the metal in the trough, while the lower end of the jar, $a b$, is screwed into its place. The pressure-tube, ef, is now inserted, and then the rod, $i k$, which is merely intended to enable the arrangement to be plunged into the water in the cylinder. A jet of steam from a small boiler is to be sent to the bottom of the water in the cylinder, until the desired temperature is attained. The exact degree can easily be maintained by more or less opening the tap of the steam-pipe. The
temperature is observed by two thermometers at g and l. As soon as the heat has risen a little, the bulb containing the fluid (the density of the vapour of which is to be determined) bursts, and the mercury slowly falls in $a b$, and of course rises in the pressure-tube, ef. By means of a rod carrying a deep notch at one end, the tap, h, is now to be opened, so as to allow the mercury to run out of the pressure-tube until it stands at or nearly the same level in both limbs. The difference of level is to be read off with a cathetometer. By a very simple calculation the vapour-density may now be found at, or very nearly, the atmospheric pressure. If it be desired to take the vapour-density at a pressure less than that of the atmosphere, it is merely necessary to use only sufficient substance to partly fill $a b$ with vapour.
983. If, on the other hand, it be desired to make the experiment at a pressure greater than that of the atmosphere, it suffices to pour mercuryinto fe to the desired extent.
984. The steel foot into which the tubes, $a b, e f$, and the rod, $i k$, are inserted, is shown on a larger scale in fig. 395 ; the lettering is the same in both engravings.
985. The results of the experiments made with this instrument belong to my paper

Fig. 395.
 which is not yet published, but I may quote the following values obtained with a specimen of propyl extracted from the products of the destructive distillation of the Torbane-hill mineral.

Vapour-density of Propyl at varying pressures.

Theory $2 \cdot 976=4$ volumes.

Temperature, Centigrade.	Pressure, millimetres.	Density.
100°	$772 \cdot 1$	2.963
97°	870.6	3.005
97°	943.8	3.022
$98^{\circ} \cdot 7$	1013.0	3.032

986. From the above Table, it is plain that the density augments with the pressure, although I am of opinion that the difference between the first two determinations is too great. It will be necessary to repeat the experiments several times before considering the amount of increase of density established ; I merely therefore give the above as an illustration of the method of proceeding.
987. Lines divided into equal parts.-It constantly happens in laboratories where gas analyses are made, that it becomes necessary to accurately and rapidly divide a line into a given number of equal parts. Among the methods which may be adopted, there are two which more especially possess the requisites of simplicity and accuracy. The first is as follows :-From one end, A, of the given line, A B, draw the line A C, making any angle with AB. From the other end, B, draw the

line BD , making ABD the same angle as ABC . The length to which the lines A C and BD are drawn is immaterial. Then point off on the line A C as many equal spaces (commencing from A) as the line $A B$ is to be divided into. In the same manner point off an equal number of spaces on the line BD. Then draw parallel lines joining the spaces marked off, taking care to connect the last point on $A C$ with the first point on BD. In this manner the line $A B$ will be accurately divided into the desired number of equal parts.
988. Another method is that used by Bunsen. On a plate of glass is drawn with a writing-diamond a line AB divided into a greater number of equal parts than is likely to be required in practice. From the divisions on this line other lines are drawn, all converging to a point, as in fig. 397.
989. Then supposing it be required to divide an inch into 17 equal parts, find that portion of the system of lines where seventeen are required to make up an inch ; in the case cited this will be atCD. In the same manner it is always possible to find some portion of the scale where the desired number of parts will be found to occupy the required space.

Fig. 397.

990. Stills for destructive distillation and other purposes.-One of the most convenient pieces of distillatory apparatus for operations requiring either high or low temperatures, may be made from a common glue-pot. The contrivance is, moreover, especially useful in distilling organic matters at high temperatures with caustic potash, as, for example, the preparation of aniline from indigo, chinoline and its associated bases from cinchonine, \&c.

In fig. 398, a represents a copper head made to slip tightly into the aperture of the glue-pot, b. A small tubulature, c, permits the passage of a thermometer, or the addition of any substance during the progress of the distillation. The seams in the head are all brazed. The juncture of the head with the pot is luted with almond and linseed-meal.
991. If it be desired to distil with a glass tube to carry the products into the condenser, or, on the other

Fig. 398.
 hand, to cohobate in the manner shown in fig. 208, I have the copper cover, fig. 399, attached to the pot. It is to be luted in the same manner as the head, fig. 398.

Fig. 399.

992. Supposing it be required to distil at a very gentle heat, such
as that of boiling water, I attach another head, somewhat smaller than that shown in fig. 398, to the water-bath of the glue-pot. The arrangement with this mode of distilling, is seen in section in fig. 400.
It is very desirable to observe the precautions mentioned in §§ 351 , 378, regarding the proper angle of "dip" for the beak of the still.
993. Supports for U-tubes.-In supporting these useful pieces of apparatus I use the arrangement seen in fig. 401. A small wooden screw (made with the instrument described in § 689) presses against a piece of wood, a, which in its turn clamps the U-tube to the upright board, $b c$, which is mortised into a wooden foot, $c d$.
994. Dr. Anderson adopts a plan for supporting U-tubes, when required for lecture illustration, which has a very neat appearance ; it is not, however, so well adapted for experiments of research as the last, owing to its being less steady. Two stout brass wires, $a b$ and $c d$, fig. 402, are

Fig. 400.

Fig. 401.

Fig. 402.

fixed at their lower extremities into a foot. On their upper ends they carry small semicircular brass pieces, $a b$, which hold the U-tube. The wires are somewhat nearer together than the width of the tube, so that a little force is required to insert it in its place, thus giving greater firmness to the apparatus.
995. Compression pipettes.-Some of my experiments rendering it frequently necessary to separate small quantities of hydrocarbons from fuming nitric acid, with which they had been treated, I found it very inconvenient to draw them off with a pipette in the usual manner, owing to the unpleasant effect of inhaling the fumes of the acid. I then adopted the plan, common in Continental laboratories, of using a pipette having a vulcanized india-rubber ball attached to its upper extremity. If the orifice of the pipette is sufficiently small, no diffi-
culty will be found in adjusting the smallest quantities with the greatest accuracy.
996. Simple decanting apparatus.-In making researches, it constantly happens that crops of crystals are obtained in the bottoms of beakers, and it is equally often required to drain the mother-liquid off without disturbing the deposit. The methods usually adopted in the laboratory to meet this end are most imperfect. It is a common proceeding to place the beaker (containing the crystals) in a sloping position on the top of another beaker; but it not unfrequently happens that a vibration of the table causes it to slip, and much delay and annoyance are thus caused. To avoid this, I made the little apparatus represented in figs. 403, 404, and 405. The beaker, a, fig. 403, is

fastened by a strong vulcanized india-rubber ring to a deeply-grooved table, b. The circular groove in b is made of long radius, so as to hold steadily variously-sized beakers. The table is supported by a square rod, d, having its lower end jointed to another rod, c, in such a manner that it permits of a circular motion, which can be arrested in any position by the screw, e. This joint is precisely on the same principle as that in the arm of the support for vapour-densities shown in fig. 141, § 247 . The figures 403 and 404 show the beaker in the
two principal positions, while fig. 405 gives a front view, illustrating the position of the two pieces of which the joint is composed. The screw is only cut on half the rod attached to the handle, e, the other part passing smoothly through one of the pieces of wood, like fig. 141, $\S 247$. The entire apparatus can easily be made by any person with the tools described in §§ 688 and 689.
997. Small press for squeezing fluids out of preparations.-In organic chemistry, the substances produced during experiments are often contaminated with oily or other kinds of fluid impurities which are usually removed by pressure between folds of filtering-paper. A small screw press can easily be made, which, by permitting greater pressure to be applied than could be given by the hands, will greatly facilitate the purification of substances. It frequently happens, that a steady pressure for a long time is the best way of removing the impurities, as, if sufficient paper be used, it becomes gradually but perfectly absorbed; and by this mode of operating there is less danger of introducing organic matter from the paper than when repeated pressure with the fingers is employed, especially as in the latter mode of proceeding the papers require more frequent renewal.
998. Cement for glass and metal for temperatures up to 212°.-For cementing glass tubes, necks of balloons, \&c. into metal mountings, where the apparatus is to be exposed to heat, a mixture of equal parts of red- and white-lead is preferable to white-lead alone. If the cemented pieces, after the junctures are made, be placed for a few days on the sand-bath, the mixture becomes extremely hard. If possible, the glass should be roughened, and a little tow wrapped round the part where it is to be applied.
999. Apparatus for obtaining the electric spark in damp rooms.-The precautions necessary for obtaining an electric spark of sufficient power to inflame gaseous mixtures, have been alluded to in $\$ \S 551$ and 555. The electrophorus, which possesses certain advantages over the electrical machine, has been described in § 657. If, however, the room in which the experiments are made is both cold and damp (and such rooms are best adapted for researches on gases), we must adopt a different method of obtaining the spark*. For this purpose, a large porcelain tube, 3 feet long and $1 \frac{1}{2}$ inch thick, is used as the substitute for an electrical machine. It is to be excited by rubbing with a piece of the best silk covered with amalgam. Only half of that portion of the silk in contact with the tube has amalgam on it.
1000. The Leyden jar is made from a small cylinder about 3 inches high and 1 inch in diameter; the inside is covered with tinfoil in the

[^1]usual manner, but the outer coating is made of platinum-foil to prevent amalgamation. To charge the jar, it is merely necessary to hold the porcelain tube in front of the iron wire with which it is mounted, and employ brisk friction with the silk and amalgam. Only a few seconds are required to obtain a sufficient charge. The amalgam is made by heating two parts of mercury with one part of thin zinc-foil, to which one part of zinc is added while stirring. It is to be melted, and stirred several times before being applied to the silk.
1001. Explanation of figs. 406 and 407.-Fig. 406 represents a plan

Fig. 406.

of a small laboratory, where only one room is available. It corresponds
in most points with the description given in § 1 . One or two differences will be found, but these arise from the fact of the arrangement in the plan having been found more practically convenient. The three balances, a a a, are protected in the manner described in § 6 . The desk, b, is placed close beside them, as that has been ascertained to be a more advantageous position than that alluded to in § 7. A large and heavy table, c, occupies a central position, while another, d, has a beading round it, to adapt it for experiments with the mercurial trough. The stoneware barrel, e, serves to hold distilled water (§ 8). Two gas-lights, $f f$, are attached by means of vulcanized india-rubber tubing with the gas-pipe. A porcelain basin, g, is sunk in the bench, and has a tap over it to supply common water. The basin has a plug

Fig. 407.

at the bottom, to enable the water to run away. The position of the water-bath (§12) is seen at h. A strong vice, i, is screwed to the
bench close to the blowpipe-table, k. A vapour or sulphuretted hydrogen closet is placed at l.
1002. A large hood, $m m$, covers a slightly raised brick flooring ($\S 11$), on which is placed a table-furnace $n n ; p p$ shows the direction of the flue beneath the sand-bath. The fireplace, and its rings (§ 29), are seen at o. The arrangement of the table-furnace is somewhat different from that seen in fig. 1, because the latter is intended to be adapted to a common fireplace. The entrance is seen at q. The windows are represented at $r r r$.

Where the laboratory is attached to a University School of Medicine, or other place where the science is taught, a very different arrangement must be adopted. The room must be much larger ; there must be a special chamber appropriated to the balances, and the working-benches should be fitted up in an entirely different manner. It will be proper to have the working places for the students at right angles to the windows, instead of parallel to them: each place should have a gas-light and a basin, with its tap for supplying water. It is convenient to have the tap rise a distance of about a foot from the table, and then bend down again in the manner seen in fig. 407, such an arrangement affording great facility for the filling of beakers, tall cylinders, \&c. with water. The disposition of shelves, \&c. in a student's working-bench, may be gathered from an inspection of fig. 407.

Table I.-For the Conversion of Degrees on the Centigrade Thermometer into Degrees of Fahrenheit's Scale.

Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.
-50	-58.0	-6	21.2	38	$100^{\circ} \cdot 4$	82	179.6
- 49	-56.2	-5	23.0	39	$102 \cdot 2$	83	$181 \cdot 4$
-48	-54.4	-4	24.8	40	104.0	84	183.2
- 47	-52.6	-3	26.6	41	105.8	85	185.0
-46	-50.8	-2	28.4	42	107.6	86	186.8
- 45	-49.0	-1	$30 \cdot 2$	43	$109 \cdot 4$	87	188.6
- 44	$-47 \cdot 2$	0	32.0	44	111.2	88	$190 \cdot 4$
-43	-45.4	+1	33.8	45	$113 \cdot 0$	89	192.2
- 42	-43.6	2	$35 \cdot 6$	46	1148	90	194.0
-41	-41.8	3	$37 \cdot 4$	47	116.6	91	195.8
-40	-40.0	4	$39 \cdot 2$	48	118.4	92	197.6
-39	-38.2	5	41.0	49	$120 \cdot 2$	93	$199 \cdot 4$
-38	-36.4	6	$42 \cdot 8$	50	122.0	94	$201 \cdot 2$
-37	$-34 \cdot 6$	7	$44 \cdot 6$	51	123.8	95	203.0
-36	$-32 \cdot 8$	8	$46 \cdot 4$	52	125.6	96	$204 \cdot 8$
-35	-30.0	10	48.2	53	127.4	97	206.6
-34	-29.2	10	50.0	54	129.2	98	208.4
-33	-27.4	11	51.8	55	131.0	99	$210 \cdot 2$
-32	-25.6	12	53.6	56	$132 \cdot 8$	100	212.0
-31	$-23 \cdot 8$	13	55.4	57	$134 \cdot 6$	101	213.8
-30	$-22 \cdot 0$	14	57.2	58	136.4	102	$215 \cdot 6$
-29	-20.2	15	59.0	59	$138 \cdot 2$	103	2174
-28	-18.4	16	$60 \cdot 8$	60	$140 \cdot 0$	104	219.2
-27	-16.6	17	$62 \cdot 6$	61	141.8	105	221.0
-26	-14.8	18	$64 \cdot 4$	62	$143 \cdot 6$	106	222.8
-25	-18.0	19	66.2	63	$145 \cdot 4$	107	$224 \cdot 6$
- 24	-11.2	20	68.0	64	147.2	108	226.4
-23	- 9.4	21	698	65	149.0	109	228.2
-22	- 7.6	22	71.6	66	$150 \cdot 8$	110	$230 \cdot 0$
-21	- $5 \cdot 8$	23	73.4	${ }^{67}$	$152 \cdot 6$	111	231.8
- 20	- 4.0	$\stackrel{24}{24}$	75.2	68	154.4	112	$233 \cdot 6$
-19	-22	25	77.0	69	156.2	113	$235 \cdot 4$
-18	-0.4	26	78.8	70	158.0	114	237.2
-17	+ 1.4	$\stackrel{27}{28}$	$80 \cdot 6$	71	159.8	115	239.0
-16	3.2	28	$82 \cdot 4$	72	$161 \cdot 6$	116	$240 \cdot 8$
-15	5.0	29	84.2	73	$163 \cdot 4$	117	$242 \cdot 6$
-14	${ }_{8}^{6.6}$	30	86.0	74	165.2	118	$244 \cdot 4$
-13	$8 \cdot 6$	31	87.8	75	$167 \cdot 0$	119	$246 \cdot 2$
-12	$10 \cdot 4$	32	89.6	76	168.8	120	$248 \cdot 0$
-11	$12 \cdot 2$	33	91.4	77	$170 \cdot 6$	121	2498
- 10	14.0	34	93.2	78	$172 \cdot 4$	122	251.6
- 9	$15 \cdot 8$	35	95.0	79	174.2	123	$253 \cdot 4$
- 8	$17 \cdot 6$	36	95.8	80	176.0	124	255.2
- 7	$19 \cdot 4$	37	98.6	81	177.8	125	257.0

Table I. (continued.)

Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.	Cent.	Fahr.
126°	$258 \cdot 8$	175	347.0	224	435×2	273	523.4
127	$260 \cdot 6$	176	348.8	225	$437 \cdot 0$	274	$525 \cdot 2$
128	$262 \cdot 4$	177	$350 \cdot 6$	226	$438 \cdot 8$	275	$527 \cdot 0$
129	2642	178	$352 \cdot 4$	227	$440 \cdot 6$	276	528.8
130	266.0	179	$354 \cdot 2$	228	$442 \cdot 4$	277	$530 \cdot 6$
131	$267 \cdot 8$	180	356.0	229	$444 \cdot 2$	278	532.4
132	$269 \cdot 6$	181	357.8	230	446.0	279	$534 \cdot 2$
133	$271 \cdot 4$	182	$359 \cdot 6$	231	$447 \cdot 8$	280	536.0
134	$273 \cdot 2$	183	$361 \cdot 4$	232	449.6	281	$537 \cdot 8$
135	$275 \cdot 0$	184	$363 \cdot 2$	233	$451 \cdot 4$	282	$539 \cdot 6$
136	276.8	185	365.0	234	$453 \cdot 2$	283	$541 \cdot 4$
137	$278 \cdot 6$	186	$366 \cdot 8$	235	455.0	284	$543 \cdot 2$
138	$280 \cdot 4$	187	$368 \cdot 6$	236	$456 \cdot 8$	285	$545 \cdot 0$
139	$282 \cdot 2$	188	$370 \cdot 4$	237	$458 \cdot 6$	286	546.8
140	284.0	189	$372 \cdot 2$	238	$460 \cdot 4$	287	$548 \cdot 6$
141	285.8	190	374.0	239	$462 \cdot 2$	288	$550 \cdot 4$
142	$287 \cdot 6$	191	$375 \cdot 8$	240	464.0	289	$552 \cdot 2$
143	$289 \cdot 4$	192	$377 \cdot 6$	241	465.8	290	$554 \cdot 0$
144	$291 \cdot 2$	193	$379 \cdot 4$	242	$467 \cdot 6$	291	555.8
145	293.0	194	$381 \cdot 2$	243	$469 \cdot 4$	292	$557 \cdot 6$
146	2948	195	383.0	244	$471 \cdot 2$	293	$559 \cdot 4$
147	296.6	196	384.8	245	$473 \cdot 0$	294	$561 \cdot 2$
148	298.4	197	$386 \cdot 6$	246	$474 \cdot 8$	295	563.0
149	$300 \cdot 2$	198	$388 \cdot 4$	247	$476 \cdot 6$	296	$564 \cdot 8$
150	$302 \cdot 0$	199	$390 \cdot 2$	248	$478 \cdot 4$	297	$566 \cdot 6$
151	$303 \cdot 8$	200	$392 \cdot 0$	249	$480 \cdot 2$	298	$568 \cdot 4$
152	$305 \cdot 6$	201	$393 \cdot 8$	250	$482 \cdot 0$	299	$570 \cdot 2$
153	$307 \cdot 4$	202	395.6	251	483.8	300	$572 \cdot 0$
154	$309 \cdot 2$	203	$397 \cdot 4$	252	485.6	301	573.8
155	311.0	204	$399 \cdot 2$	253	$487 \cdot 4$	302	$575 \cdot 6$
156	312.8	205	$401 \cdot 0$	254	$489 \cdot 2$	303	$577 \cdot 4$
157	314.6	206	$402 \cdot 8$	255	$491 \cdot 0$	304	$579 \cdot 2$
158	316.4	207	$404 \cdot 6$	256	$492 \cdot 8$	305	$581 \cdot 0$
159	318.2	208	$406 \cdot 4$	257	$494 \cdot 6$	306	582.8
160	320.0	209	$408 \cdot 2$	258	496.4	307	$584 \cdot 6$
161	321.8	210	$410 \cdot 0$	259	$498 \cdot 2$	308	586.4
162	$323 \cdot 6$	211	$411 \cdot 8$	260	$500 \cdot 0$	309	588.2
163	$325 \cdot 4$	212	$413 \cdot 6$	261	$501 \cdot 8$	310	$590 \cdot 0$
164	$327 \cdot 2$	213	$415 \cdot 4$	262	$503 \cdot 6$	311	591.8
165	329.0	214	$417 \cdot 2$	263	505.4	312	$593 \cdot 6$
166	$330 \cdot 8$	215	$419 \cdot 0$	264	$507 \cdot 2$	313	$595 \cdot 4$
167	$332 \cdot 6$	216	$420 \cdot 8$	265	$509 \cdot 0$	314	$597 \cdot 2$
168	$334 \cdot 4$	217	422.6	266	$510 \cdot 8$	315	599.0
169	336.2	218	$424 \cdot 4$	267	$512 \cdot 6$	316	$600 \cdot 8$
170	338.0	219	426.2	268	514.4	317	$602 \cdot 6$
171	$339 \cdot 8$	220	$428 \cdot 0$	269	516.2	318	$604 \cdot 4$
172	341.6	221	$429 \cdot 8$	270	$518 \cdot 0$	319	$606 \cdot 2$
173	$343 \cdot 4$	222	$431 \cdot 6$	271	$519 \cdot 8$	320	$608 \cdot 0$
174	$345 \cdot 2$	223	$433 \cdot 4$	272	$521 \cdot 6$		

Table II.-Elastic Force of Aqueous Vapour in inches of Mercury for Fahrenheit's Thermometer.

Temp. Fahr.	Force. Inches of Mercury.						
\bigcirc	$0 \cdot 051$	32	0•186	63	0.570	$9{ }^{\circ}$	1.562
1	$0 \cdot 053$	33	0.193	64	0.590	95	1.610
2	$0 \cdot 056$	34	0.200	65	0.611	96	$1 \cdot 660$
3	0.058	35	0.208	66	$0 \cdot 632$	97	1.712
4	$0 \cdot 060$	36	$0 \cdot 216$	67	$0 \cdot 654$	98	1.764
5	0.063	37	$0 \cdot 224$	68	0.676	99	1.819
6	$0 \cdot 066$	38	$0 \cdot 233$	69	$0 \cdot 699$	100	1.874
7	$0 \cdot 069$	39	$0 \cdot 242$	70	0.723	101	1.931
8	0.071	40	$0 \cdot 251$	71	0.748	102	1.990
9	0.074	41	$0 \cdot 260$	72	0.773	103	$2 \cdot 050$
10	0.078	42	$0 \cdot 270$	73	0.799	104	$2 \cdot 112$
11	0.081	43	0.280	74	0.826	105	$2 \cdot 176$
12	$0 \cdot 084$	44	$0 \cdot 291$	75	0.854	106	$2 \cdot 241$
13	0.088	45	$0 \cdot 302$	76	$0 \cdot 882$	107	2.307
14	$0 \cdot 092$	46	$0 \cdot 313$	77	0.911	108	$2 \cdot 376$
15	0.095	47	$0 \cdot 324$	78	0.942	109	$2 \cdot 447$
16	0.099	48	$0 \cdot 336$	79	0.973	110	$2 \cdot 519$
17	$0 \cdot 103$	49	0.349	80	1.005	111	2.593
18	$0 \cdot 107$	50	$0 \cdot 361$	81	1.036	112	$2 \cdot 669$
19	$0 \cdot 112$	51	$0 \cdot 375$	82	1.072	113	2.747
20	$0 \cdot 116$	52	$0 \cdot 389$	83	$1 \cdot 106$	114	2.826
21	$0 \cdot 121$	53	$0 \cdot 402$	84	$1 \cdot 142$	115	$2 \cdot 908$
22	$0 \cdot 126$	54	$0 \cdot 417$	85	$1 \cdot 179$	116	$2 \cdot 992$
23	$0 \cdot 131$	55	$0 \cdot 432$	86	$1 \cdot 217$	117	$3 \cdot 078$
24	$0 \cdot 136$	56	$0 \cdot 447$	87	$1 \cdot 256$	118	$3 \cdot 166$
25	$0 \cdot 142$	57	$0 \cdot 463$	88	$1 \cdot 296$	119	$3 \cdot 257$
26	$0 \cdot 147$	58	$0 \cdot 480$	89	$1 \cdot 337$	120	$3 \cdot 349$
27	$0 \cdot 153$	59	$0 \cdot 497$	90	$1 \cdot 380$	121	$3 \cdot 444$
28	$0 \cdot 159$	60	0.514	91	$1 \cdot 423$	122	$3 \cdot 542$
29	$0 \cdot 165$	61	0.532	92	1.468	123	$3 \cdot 641$
30	$0 \cdot 172$	62	0.551	93	1.514	124	$3 \cdot 743$
31	$0 \cdot 179$						

Table V.-According to Magnus.

Degrees of the Mercurial Thermometer.	Degrees of the Air- thermometer.	Degrees of the Mercurial Thermometer.	Degrees of the Air- thermometer.
100	$100 \cdot 00$	250	$245 \cdot 39$
150	$148 \cdot 74$	300	294.51
200	$196 \cdot 49$	330	$320 \cdot 92$

Table III.-Elastic Force of Aqueous Vapour in Millimetres of Mercury for Centigrade Thermometer.

Tempe- rature. Cent.	Force of the Aqueous Vapour in Milli- metres.	Tempe- rature. Cent.	Force of the Aqueous Vapour in Milli- metres.	Tempe-	Force of the Aquature. Cent.	Aqueous (apour Mill. in Mill metres.	Tempe- raturee Cent.
0	$4 \cdot 525$	11	$9 \cdot 751$	22	$19 \cdot 675$	33	$37 \cdot 473$
Aqueous the							
Vapour							
in Milli-							
metres.							

Table IV.-Comparison of the Degrees of the Mercurial with those of the Air-thermometer.-According to Regnault.

Air-thermo- meter.	Mercurial Thermometer.	Air-thermo. meter.	Mercurial Thermometer.
0	0	250	$250 \cdot 0$
50	$50 \cdot 2$	300	$301 \cdot 2$
100	100.0	325	$326 \cdot 9$
150	$100 \cdot 0$	350	$353 \cdot 3$
200	$200 \cdot 0$		

[Table V.-See opposite page.]
Table VI.-According to Dulong and Petit.

Degrees of the Mer- curial Thermometer.	Degrees of the Air- thermometer.	Degrees of the Mer- curial Thermometer.	Degres of the Air- thermometer.
105	$104 \cdot 8$	220	$216 \cdot 2$
110	$109 \cdot 6$	230	$295 \cdot 9$
120	$119 \cdot 5$	240	$235 \cdot 4$
130	$129 \cdot 2$	250	$245 \cdot 0$
140	$139 \cdot 0$	260	$254 \cdot 6$
150	$148 \cdot 7$	270	$264 \cdot 0$
160	$158 \cdot 4$	280	$273 \cdot 5$
170	$168 \cdot 0$	290	$283 \cdot 2$
180	$177 \cdot 7$	300	$292 \cdot 7$
190	$187 \cdot 4$	320	$311 \cdot 6$
200	$197 \cdot 0$	340	$330 \cdot 5$
210	$206 \cdot 7$	350	$340 \cdot 0$

Table VII．－Correction to be applied to Barometers with brass scales，extending from the cistern to the top of the

	－dü ${ }^{\text {L }}$		ONoos	ニ999サํ	
$\begin{aligned} & \dot{g} \\ & \stackrel{y y y y}{\mid c} \end{aligned}$	$\stackrel{5}{5}$				\％odeto
	大	＋			
	－	＋¢ி\％	蒙司事妻晏	궁⿹ㅜㅇㅜㅜ웅웅	
	สิ			ず	\＄¢
	冎	＋		아웅\％్ర¢	
	ค 1				
	¢	＋			W్ర్ర¢
	＊		앙우융훵융		
	皆	＋		W్ర్ర¢	
	\％		匊束웅우융		
	ลิ์				
	ํㅜ	＋			
	$\stackrel{\leftrightarrow}{\text { ล }}$				
	ন				
	¢	＋			
	กิ	＋			
	－dum ${ }^{\text {L }}$	－－－morts	ON000	シヘ9ッザロ	

NNOか

＇dua ${ }^{\text {L }}$			¢100988		¢ ¢ ¢ ¢ ¢
$\begin{aligned} & \dot{\Phi} \\ & \text { 品 } \\ & \text { an } \end{aligned}$	$\stackrel{\leftrightarrow}{\text { H }}$	12000\％			
	大				
	－	।	1200 \％¢ ¢ ¢ ¢		
	\％			100000\％	¢0．90\％
	ถ	1			20：
	ลิ				
	－			ETpop	
	तै		¢\％		
	กิ์				
	๕ิ				
	ลิ์			象氟安岢色	
	ถิํ		H140080\％		
	$\stackrel{10}{\square 1}$	1 웅우웅융뀽			N（1）
	ลี			¢\％\％ix	
	¢	1 ⿹ㅜ영웅숭웅		\％\％\％	
	กิ				
－duıj ${ }_{\text {L }}$				－1969 96	¢才： 888

	2\％	－ํ．ㅋํํ	우ㅇㅜㅜ우웅	○\％すき	$\%$
28	위엉ㅇㅇ응		ตง	\％	

No

か®刃心	$10 \times \infty$	せ2，	¢0800	크ำ込	
？	¢ ¢ ¢ ¢	－909－		－－－\％	$\div \div \div$

Table VII．（contimued．）

	6			
	¢0\％	।		28
	$\%$	।		\％8\％
	$\begin{aligned} & \stackrel{1}{8} \\ & \stackrel{\circ}{8} \end{aligned}$	।		인융욱
	ลิ	।		8웅유ㅇㅠㅜ
	$\stackrel{10}{\sim}$			
	－	।	¢0\％	¢\％
${ }^{\text {dum }}{ }^{\text {L }}$			919ㅇ엉ㅇ	Tog 0°
	\cdots		害导筞융:	
	8			
	$$			
	8	＋		
	$$		冓궁우웅웅	잉ํㅇํํํํํํํํ
	$\stackrel{\sim}{\circ}$		\＃\＃웅웅웅웅	
－duว ${ }^{\text {L }}$			ニッヅざつ	

Table VIII.-Correction to be applied to Barometers, the scales of which are engraved on glass, to reduce the observations to 32° Fahr.

Temp.	Inches. $28^{\circ} 0$.	Inches. $28 \cdot 5$.	Inches. $29^{\circ} 0$.	Inches. 29.5.	Inches. 30.0 .	Inches. 30.5 .	Inches.	Inches.
25	$+\cdot 017$	+ 017	+.017		+ 018			
30	+.005	+.005	+.005	+.005	+.005	+.005	+.005	
35	-. 007	-. 007	-.007	-.008	-.008	-.008	-. 008	-.008
40	-. 019	-.020	- 020	- 020	- 021	-. 021	-.021	-.022
45	-. 031	-. 032	-.032	-.033	-.033	-.034	-.035	-.036
50	-. 043	-. 044	-. 045	-.046	-.046	-. 047	-. 048	-. 049
55	-. 055	-. 056	-. 057	-. 058	-. 059	-.060	-.061	-. 062
60	-. 067	-. 068	- $\cdot 069$	-.071	-.072	-. 074	-. 075	-. 076
65	-. 079	-.081	-. 082	-. 083	-. 085	-.086	-.088	-. 089
70	-. 091	-. 093	-. 094	-.096	-.098	$-\cdot 100$	- 101	- 103
75	- 103	- 105	- 106	- •109	- $\cdot 111$	- 114	- 116	- 118

Table IX.-Correction to be added to Barometers for Capillary Action.

Diameter of Tube.	Correction for	
	Unboiled Tubes.	Boiled Tubes.
inch.	inch.	inch.
0.60	0.004	0.002
0.50	0.007	0.003
0.45	0.010	0.005
0.40	0.014	0.007
0.35	0.020	0.010
0.30	0.028	0.014
0.25	0.040	0.020
0.20	0.060	0.029
0.15	0.088	0.044
0.10	0.142	0.070

Table X.

Grms.	Grains.	Deci- grms.	Grains.
1	$15 \cdot 4346$	1	$1 \cdot 5434$
2	$30 \cdot 8692$	2	$3 \cdot 0869$
3	$46 \cdot 3038$	3	$4 \cdot 6304$
4	$61 \cdot 7384$	4	$6 \cdot 1738$
5	$77 \cdot 1730$	5	$7 \cdot 7173$
6	$92 \cdot 6076$	6	$9 \cdot 2607$
7	$108 \cdot 0422$	7	$10 \cdot 8042$
8	$123 \cdot 4768$	8	$12 \cdot 3476$
9	$138 \cdot 9114$	9	$13 \cdot 8911$

Table XI.

Centi- grammes.	Grains.	Milli- grammes.	Grains.
1	$\cdot 1543$	1	$\cdot 0154$
2	$\cdot 3086$	2	$\cdot 0308$
3	.4630	3	$\cdot 0463$
4	$\cdot 6173$	4	$\cdot 0617$
5	$\cdot 7717$	5	$\cdot 0771$
6	$\cdot 9260$	6	$\cdot 0926$
7	$1 \cdot 0804$	7	$\cdot 1080$
8	$1 \cdot 2347$	8	$\cdot 1234$
9	1.3891	9	$\cdot 1389$

Table XII.-For conversion of millimetres into inches, and inches into millimetres.

Inches into millimetres.	$\begin{gathered} 1 \\ 25 \cdot 39954 \end{gathered}$	$\begin{gathered} \underset{50}{2} \\ 5098 \end{gathered}$	$\begin{gathered} 3 \\ 76 \cdot 19862 \end{gathered}$	$\stackrel{4}{4} 101 \cdot 5982$	$\stackrel{5}{126 \cdot 9977}$	$\begin{gathered} 6 \\ 152 \cdot 3972 \end{gathered}$	$\stackrel{7}{177 \cdot 7968}$	$\begin{gathered} 8 \\ 203 \cdot 1963 \end{gathered}$	$\begin{gathered} 9 \\ 228 \cdot 5959 \end{gathered}$
Millimetres into inches.	-03937079	$\cdot 07874158$	$\cdot 11811237$	$\cdot 15748316$	$\cdot 19685395$	$\cdot 23622474$	$\cdot 27559553$	$\cdot 31496632$	$\cdot 35433711$

Boiling-point. ${ }^{\circ}$ Fahr.	Barometer. Inches.	Boiling-point. ${ }^{\circ}$ Fahr.	Barometer. Inches.	Boiling-point. ${ }^{\circ}$ Fahr.	Barometer. Inches.	Table XV.-Expansion of gases by heat (Regnault). Between 30° and $212^{\circ} \mathrm{F} .1000$ parts become	
184	$16 \cdot 676$	195	$21 \cdot 124$	206	26.529		
185	$17 \cdot 047$	196	21.576	207	$27 \cdot 068$	Hydrogen :	$1366 \cdot 13$
186	$17 \cdot 421$	197	22.030	208	$27 \cdot 614$	Carbonic oxide . . .	$1366 \cdot 88$
187	$17 \cdot 803$	198	$22 \cdot 498$	209	$28 \cdot 183$	Atmospheric air . . .	$1367 \cdot 06$
188	$18 \cdot 196$	199	22.965	210	$28 \cdot 744$	Nitrogen :	$1366 \cdot 82$
189	18.593	200	$23 \cdot 454$	211	29.331	Hydrochloric acid . .	$1368 \cdot 12$
190	18.992	201	23.937	212	29.922	Carbonic acid	$1370 \cdot 99$
191	$19 \cdot 407$	202	$24 \cdot 441$	213	30.516	Protoxide of nitrogen .	1371.95
192	$19 \cdot 822$	203	25.014	214	$31 \cdot 120$	Cyanogen	$1387 \cdot 67$
193	$20 \cdot 254$	204	25.468	215	$31 \cdot 730$	Sulphurous acid . . .	$1390 \cdot 28$
194	$20 \cdot 687$	205	25.992				

XVI.

Tables showing the Specific Gravity of Liquids at the temperature of $55^{\circ} \mathrm{F}$., corresponding to the degrees of Beaumés Hydrometer.

For Liquids lighter than water.

Deg. Sp. Gr.	Deg. Sp.Gr.	Deg. Sp. Gr.	Deg. Sp. Gr.	Deg. Sp. Gr.
$10=1 \cdot 000$	$17=0.949$	$23=0.909$	$29=0.874$	$35=0.842$
110.990	$18 \quad 0 \cdot 942$	$24 \quad 0.903$	$\begin{array}{lll}30 & 0.867\end{array}$	$36 \quad 0 \cdot 837$
120.985	$19 \quad 0.935$	$25 \quad 0.897$	$31 \quad 0.861$	$37 \quad 0.832$
$13 \quad 0.977$	$20 \quad 0.923$	$26 \quad 0.892$	$\begin{array}{ll}32 & 0.856\end{array}$	$38 \quad 0.827$
$14 \quad 0 \cdot 970$	$21 \quad 0.922$	$27 \quad 0.886$	$33 \quad 0.852$	$39 \quad 0.822$
$15 \quad 0.963$	$22 \quad 0 \cdot 915$	$28 \quad 0.880$	$\begin{array}{ll}34 & 0.847\end{array}$	$40 \quad 0.817$
$16 \quad 0 \cdot 955$				

For Liquids heavier than water.

Deg.	Sp. Gr.								
$0=$	1.000	$15=1 \cdot 114$		$30=1 \cdot 261$		$45=1.455$		$60=1.717$	
3	1.020	18	$1 \cdot 140$	3311295		$48 \quad 1 \cdot 500$		63	1.779
6	1.040	21	$1 \cdot 170$	$36 \quad 1 \cdot 333$		51	$1 \cdot 547$	66	1.848
9	1.064	24	$1 \cdot 200$	39	$\begin{aligned} & 1.373 \\ & 1.414 \end{aligned}$	54	$\begin{aligned} & 1 \cdot 594 \\ & 1 \cdot 659 \end{aligned}$	69	1.920
12	1.089	27	$1 \cdot 230$	42		57		72	$2 \cdot 000$

Table XVII.-Weight of one cubic centimetre of atmospheric air at different temperatures from 0° to $300^{\circ} \mathrm{C}$. (grammes).

\bigcirc	0.001293 0.001288	21	0.0012	$4{ }^{\circ}$	0	61	
2	0.0001284	22	$0 \cdot 001197$	42	0.001121	62	0.001057 0.001053
3	0.001279	23	$0 \cdot 001193$	43	$0 \cdot 001118$	63	0.001050
4	0.001275	24	0.001189	44	0.001114	64	0.001047
5	0.001270	25	0.001185	45	$0 \cdot 001111$	65	0.001044
6	0.001266	26	$0 \cdot 001181$	46	$0 \cdot 001108$	66	$0 \cdot 001041$
7	0.001261	27	$0 \cdot 001177$	47	0.001105	67	0.001038
8	$0 \cdot 001257$	28	$0 \cdot 001173$	48	0.001102	68	0.001035
9	0.001252	29	0.001169	49	$0 \cdot 001098$	69	0.001032
10	0.001248	30	$0 \cdot 001165$	50	$0 \cdot 001095$	70	$0 \cdot 001029$
11	$0 \cdot 001243$	31	$0 \cdot 001161$	51	$0 \cdot 001091$	71	$0 \cdot 001026$
12	0.001239	32	$0 \cdot 001157$	52	$0 \cdot 001088$	72	0.001023
13	0.001234	33	0.001154	53	$0 \cdot 001084$	73	$0 \cdot 001020$
14	0.001230	34	0.001150	54	$0 \cdot 001081$	74	$0 \cdot 001017$
15	0.001225	35	$0 \cdot 001146$	55	$0 \cdot 001077$	75	0.001014
16	$0 \cdot 001221$	36	0.001142	56	$0 \cdot 001074$	76	$0 \cdot 001011$
17	$0 \cdot 001217$	37	0.001138	57	$0 \cdot 001070$	77	$0 \cdot 001008$
18	$0 \cdot 001213$	38	0.001134	58	$0 \cdot 001067$	78	$0 \cdot 001005$
19	0.001209	39	0.001131	59	$0 \cdot 001063$	79	0.001002
20	0.001205	40	0.001128	60	0.001060	80	$0 \cdot 001000$

Table XVII. (continued.)

81	$0 \cdot 000997$	1268	$0 \cdot 000884$	$171{ }^{\circ}$	0.000794	216	$0 \cdot 000721$
82	$0 \cdot 000994$	127	$0 \cdot 000882$	172	$0 \cdot 000793$	217	$0 \cdot 000719$
83	$0 \cdot 000992$	128	$0 \cdot 000880$	173	0.000791	218	$0 \cdot 000718$
84	$0 \cdot 000989$	129	$0 \cdot 000878$	174	$0 \cdot 000789$	219	$0 \cdot 000716$
85	$0 \cdot 000986$	130	$0 \cdot 000876$	175	0.000788	220	$0 \cdot 000715$
86	$0 \cdot 000983$	131	$0 \cdot 000874$	176	$0 \cdot 000786$	221	$0 \cdot 000713$
87	$0 \cdot 000980$	132	$0 \cdot 000871$	177	0.000784	222	$0 \cdot 000712$
88	$0 \cdot 000977$	133	$0 \cdot 000869$	178	0.000782	223	$0 \cdot 000710$
89	$0 \cdot 000974$	134	$0 \cdot 000867$	179	0.000781	224	$0 \cdot 000709$
90	$0 \cdot 000972$	135	$0 \cdot 000865$	180	$0 \cdot 000779$	225	0.000708
91	$0 \cdot 000969$	136	$0 \cdot 000863$	181	$0 \cdot 000777$	226	$0 \cdot 000706$
92	$0 \cdot 000967$	137	$0 \cdot 000860$	182	$0 \cdot 000776$	227	$0 \cdot 000705$
93	0.000964	138	$0 \cdot 000858$	183	$0 \cdot 000774$	228	0.000703
94	$0 \cdot 000962$	139	$0 \cdot 000856$	184	$0 \cdot 000772$	229	$0 \cdot 000702$
95	0.000959	140	$0 \cdot 000854$	185	$0 \cdot 000770$	230	$0 \cdot 000701$
96	$0 \cdot 000956$	141	$0 \cdot 000852$	186	$0 \cdot 000769$	231	$0 \cdot 000699$
97	$0 \cdot 000953$	142	$0 \cdot 000850$	187	$0 \cdot 000767$	232	$0 \cdot 000698$
98	$0 \cdot 000951$	143	$0 \cdot 000848$	188	$0 \cdot 000765$	233	$0 \cdot 000697$
99	0.000948	144	$0 \cdot 000846$	189	$0 \cdot 000763$	234	$0 \cdot 000695$
100	$0 \cdot 000946$	145	$0 \cdot 000844$	190	$0 \cdot 000762$	235	0.000694
101	$0 \cdot 000943$	146	$0 \cdot 000842$	191	$0 \cdot 000760$	236	$0 \cdot 000692$
102	$0 \cdot 000941$	147	$0 \cdot 000840$	192	$0 \cdot 000758$	237	$0 \cdot 000691$
103	$0 \cdot 000938$	148	$0 \cdot 000838$	193	$0 \cdot 000757$	238	$0 \cdot 000690$
104	$0 \cdot 000936$	149	$0 \cdot 000836$	194	$0 \cdot 000755$	239	$0 \cdot 000689$
105	$0 \cdot 000933$	150	$0 \cdot 000834$	195	$0 \cdot 000754$	240	0.000688
106	$0 \cdot 000931$	151	$0 \cdot 000832$	196	$0 \cdot 000752$	241	$0 \cdot 000686$
107	$0 \cdot 000928$	152	$0 \cdot 000830$	197	$0 \cdot 000751$	242	$0 \cdot 000685$
108	0.000926	153	$0 \cdot 000828$	198	$0 \cdot 000749$	243	$0 \cdot 000683$
109	$0 \cdot 000923$	154	0.000826	199	$0 \cdot 000748$	244	$0 \cdot 000682$
110	$0 \cdot 000921$	155	$0 \cdot 000824$	200	$0 \cdot 000746$	245	$0 \cdot 000681$
111	$0 \cdot 000919$	156	$0 \cdot 000822$	201	$0 \cdot 000744$	246	$0 \cdot 000679$
112	$0 \cdot 000916$	157	$0 \cdot 000821$	202	$0 \cdot 000743$	247	$0 \cdot 000678$
113	0.000914	158	$0 \cdot 000819$	203	0.000740	248	$0 \cdot 000677$
114	$0 \cdot 000911$	159	$0 \cdot 000817$	204	$0 \cdot 000739$	249	0.000675
115	$0 \cdot 000909$	160	0.000815	205	$0 \cdot 000737$	250	$0 \cdot 000674$
116	$0 \cdot 000907$	161	$0 \cdot 000813$	206	$0 \cdot 000736$	251	0.000673
117	$0 \cdot 000905$	162	$0 \cdot 000811$	207	$0 \cdot 000734$	252	$0 \cdot 000672$
118	$0 \cdot 000903$	163	$0 \cdot 000809$	208	$0 \cdot 000733$	253	$0 \cdot 000670$
119	$0 \cdot 000900$	164	$0 \cdot 000807$	209	$0 \cdot 000731$	254	$0 \cdot 000669$
120	$0 \cdot 000898$	165	$0 \cdot 000806$	210	$0 \cdot 000730$	255	$0 \cdot 000668$
121	$0 \cdot 000896$	166	$0 \cdot 000804$	211	$0 \cdot 000728$	256	$0 \cdot 000666$
122	$0 \cdot 000894$	167	$0 \cdot 000802$	212	$0 \cdot 000727$	257	0.000665
123	$0 \cdot 000891$	168	$0 \cdot 000800$	213	$0 \cdot 000725$	258	0.000664
124	$0 \cdot 000889$	169	$0 \cdot 000798$	214	$0 \cdot 000724$	259	$0 \cdot 000663$
125	$0 \cdot 000887$	170	$0 \cdot 000796$	215	$0 \cdot 000722$	260	$0 \cdot 000662$

Table XVII. (continued.)

261	$0 \cdot 000660$	271	0.000648	281	$0 \cdot 000636$	291	$0 \cdot 000625$
262	$0 \cdot 000659$	272	$0 \cdot 000647$	282	$0 \cdot 000635$	292	$0 \cdot 000624$
263	$0 \cdot 000658$	273	$0 \cdot 000646$	283	$0 \cdot 000634$	293	$0 \cdot 000623$
264	$0 \cdot 000657$	274	$0 \cdot 000645$	284	$0 \cdot 000633$	294	$0 \cdot 000622$
265	$0 \cdot 000655$	275	$0 \cdot 000643$	285	$0 \cdot 000631$	295	$0 \cdot 00062 \mathrm{i}$
266	$0 \cdot 000654$	276	$0 \cdot 000642$	286	$0 \cdot 000630$	296	$0 \cdot 000620$
267	$0 \cdot 000653$	277	$0 \cdot 000641$	287	$0 \cdot 000629$	297	$0 \cdot 000619$
268	$0 \cdot 000652$	278	$0 \cdot 000640$	288	$0 \cdot 000628$	298	$0 \cdot 000618$
269	$0 \cdot 000651$	279	$0 \cdot 000639$	289	$0 \cdot 000627$	299	$0 \cdot 000617$
270	$0 \cdot 000650$	280	$0 \cdot 000638$	290	$0 \cdot 000626$	300	$0 \cdot 000616$

Table XVIII.-Specific Gravity and Absolute Weight of several Gases.

	Specific gravity : atmospheric air $=1 \% 000$.	One litre (1000 cubic centimetres) of gas at $0^{\circ} \mathrm{C}$. and 0.76 metre bar. pressure weight. Grammes.
Atmospheric air	1.0000	1.29363
Oxygen	$1 \cdot 10563$	$1 \cdot 43028$
Hydrogen	$0 \cdot 06910$	0.08939
Water, vapour of	$0 \cdot 62192$	$0 \cdot 80453$
Carbon, vapour of . . .	$0 \cdot 82922$	1.07270
Carbonic acid .	$1 \cdot 52024$	1.96663
Carbonic oxide	0.96743	$1 \cdot 25150$
Phosphorus, vapour of .	$4 \cdot 33452$	$5 \cdot 60727$
Sulphur, vapour of	6.63378	$8 \cdot 58165$
Hydrosulphuric acid	$1 \cdot 17475$	$1 \cdot 51969$
Iodine, vapour of .	$8 \cdot 76760$	$11 \cdot 34203$
Bromine, vapour of	$5 \cdot 52605$	$7 \cdot 14866$
Chlorine	$2 \cdot 45052$	$3 \cdot 17007$
Nitrogen	$0 \cdot 96776$	$1 \cdot 25192$
Ammonia	$0 \cdot 58753$	$0 \cdot 76005$

Table XIX.-Showing the Quantity of Absolute Alcohol in Spirits of different Specific Gravities, according to Lowitz.

100 Parts.		Specific Gravity.		100 Parts.		Specific Gravity.	
Alcohol.	Water.	At $68{ }^{\circ}$.	At $60{ }^{\circ}$.	Alcohol.	Water.	At $68{ }^{\circ}$.	At $60{ }^{\circ}$.
100	0	0.791	0.796	95	5	0.805	$0 \cdot 809$
99	1	0.794	0.798	94	6	0.808	$0 \cdot 812$
98	2	0.797	0.801	93	7	0.811	0.815
97	3	0.800	$0 \cdot 804$	92	8	0.813	0.817
96	4	0.803	$0 \cdot 807$	91	9	0.816	0.820

Table XIX. (contmued.)

100 Parts.		Specific Gravity.		100 Parts.		Specific Gravity.	
Alcohol.	Water.	At 68°.	At 60°.	Alcohol.	Water.	At $68{ }^{\circ}$.	At 60°.
90	10	0.818	0.822	44	56	0.927	0.930
89	11	0.821	$0 \cdot 825$	43	57	0.930	0.933
88	12	0.823	$0 \cdot 827$	42	58	0.932	0.935
87	13	0.826	$0 \cdot 830$	41	59	0.934	0.937
86	14	0.828	0832	40	60	0.936	0.939
85	15	0.831	$0 \cdot 835$	39	61	0.938	0.941
84	16	0.834	0.838	38	62	0.940	0.943
83	17	0.836	$0 \cdot 840$	37	63	0.942	0.945
82	18	0.839	0.843	36	64	0.944	0.947
81	19	0.842	$0 \cdot 846$	35	65	0.946	0.949
80	20	0.844	$0 \cdot 848$	34	66	0.948	0.951
79	21	$0 \cdot 847$	0.851	33	67	0.950	0.953
78	22	0.849	$0 \cdot 853$	32	68	0.952	0.955
77	23	$0 \cdot 851$	0.855	31	69	0.954	0.957
76	24	0.853	$0 \cdot 857$	30	70	0.956	0.958
75	25	0.856	0.860	29	71	0.957	0.960
74	26	0.859	0.863	28	72	0.959	0.962
73	27	$0 \cdot 861$	0.865	27	73	0.961	0.963
72	28	0.863	0.867	26	74	0.963	0.965
71	29	0.866	0.870	25	75	0.965	$0 \cdot 967$
70	30	0.868	0.872	24	76	0.966	0.968
69	31	0.870	0.874	23	77	0.968	0.970
68	32	0.872	0.875	22	78	0.970	0.972
67	33	0.875	0.879	21	79	0.971	0.973
66	34	0.877	0.881	20	80	0.973	0.974
65	35	0.880	0.883	19	81	$0 \cdot 974$	0.975
64	36	0.882	0.886	18	82	0.976	0.977
63	37	0.885	0.889	17	83	0.977	0.978
62	38	0.887	0.891	16	84	0.978	0.979
61	39	0.889	0.893	15	85	0.980	0.981
60	40	0.892	0.896	14	86	0.981	0.982
59	41	0.894	$0 \cdot 898$	13	87	0.983	0.984
58	42	0.896	0.900	12	88	0.985	0.986
57	43	0.899	0.902	11	89	0.986	0.987
56	44	0.901	$0 \cdot 904$	10	90	$0 \cdot 987$	0.988
55	45	0.903	0.906	9	91	0.988	$0 \cdot 989$
54	46	0.905	0.908	8	92	0.989	0.990
53	47	0.907	0.910	7	93	0.991	0.991
52	48	0.909	0.912	6	94	0.992	0.992
51	49	0.912	0.915	5	95	0.994	
50	50	0.914	0.917	4	96	0.995	
49	51	0.917	0.920	3	97	0.997	
48	52	0.919	0.922	2	98	0.998	
47	53	0.921	0.924	1	99	0.999	
46	54	0.923	0.926	0	100	1.000	
45	55	0.925	0.928				

Table XX.-Showing the Quantity of Absolute Alcohol by Weight in Mixtures of Alcohol and Water of different Specific Gravities, according to Mr. Drinkwater.

$\begin{gathered} \text { Sp. Gr. } \\ \text { at } \\ 60^{\circ} \text { Fahr. } \end{gathered}$	Alcohol per cent. byweight.	$\begin{aligned} & \text { Sp. Gr. } \\ & 60^{\circ} \text { at } \end{aligned}$	Alcohol per cent. byweight.	$\begin{aligned} & \text { Sp. Gr. } \\ & \text { at } \\ & 60^{\circ} \text { Fahr. } \end{aligned}$	Alcohol per cent. byweight.	$\begin{aligned} & \text { Sp. Gr. } \\ & \text { at } \\ & 60^{\circ} \text { Fahr. } \end{aligned}$	Alcohol per cent. byweight.
1.0000	0.00	$\cdot 9959$	$2 \cdot 22$	$\cdot 9918$	$4 \cdot 64$. 9877	$7 \cdot 30$
. 9999	$0 \cdot 05$	-9958	$2 \cdot 28$	-9917	$4 \cdot 70$	$\cdot 9876$	$7 \cdot 37$
. 9998	$0 \cdot 11$. 9957	$2 \cdot 34$	-9916	$4 \cdot 76$	$\cdot 9875$	$7 \cdot 43$
.9997	$0 \cdot 16$. 9956	$2 \cdot 37$. 9915	$4 \cdot 82$	-9874	$7 \cdot 50$
-9996	$0 \cdot 21$	$\cdot 9955$	$2 \cdot 45$	$\cdot 9914$	$4 \cdot 88$	$\cdot 9873$	$7 \cdot 57$
$\cdot 9995$	$0 \cdot 26$	- 9954	2.51	-9913	$4 \cdot 94$	$\cdot 9872$	$7 \cdot 64$
-9994	$0 \cdot 32$	-9953	$2 \cdot 57$. 9912	5.01	-9871	$7 \cdot 71$
.9993	$0 \cdot 37$	$\cdot 9952$	$2 \cdot 62$. 9911	$5 \cdot 07$	$\cdot 9870$	$7 \cdot 68$
. 9992	$0 \cdot 42$. 9951	$2 \cdot 68$	$\cdot 9910$	$5 \cdot 13$	$\cdot 9869$	7.85
. 9991	$0 \cdot 47$.9950	2.74	$\cdot 9909$	$5 \cdot 20$	-9868	$7 \cdot 92$
. 9990	$0 \cdot 53$	-9949	2.79	$\cdot 9908$	$5 \cdot 26$	-9867	$7 \cdot 99$
. 9989	$0 \cdot 58$	$\cdot 9948$	$2 \cdot 85$	$\cdot 9907$	$5 \cdot 32$	$\cdot 9866$	8.06
.9988	$0 \cdot 64$	$\cdot 9947$	$2 \cdot 91$	$\cdot 9906$	$5 \cdot 39$	-9865	$8 \cdot 13$
-9987	$0 \cdot 69$	-9946	$2 \cdot 97$	-9905	$5 \cdot 45$	-9864	$8 \cdot 20$
. 9986	$0 \cdot 74$. 9945	3.02	$\cdot 9904$	$5 \cdot 51$	$\cdot 9863$	$8 \cdot 27$
.9985	$0 \cdot 80$	$\cdot 9944$	3.08	. 9903	$5 \cdot 58$	$\cdot 9862$	$8 \cdot 34$
. 9984	$0 \cdot 85$. 9943	$3 \cdot 14$	$\cdot 9902$	$5 \cdot 64$	$\cdot 9861$	$8 \cdot 41$
. 9983	0.91	. 9942	$3 \cdot 20$	$\cdot 9901$	5.70	$\cdot 9860$	$8 \cdot 48$
-9982	0.96	. 9941	$3 \cdot 26$	$\cdot 9900$	$5 \cdot 77$	$\cdot 9859$	$8 \cdot 55$
$\cdot 9981$	$1 \cdot 02$. 9940	$3 \cdot 32$	$\cdot 9899$	$5 \cdot 83$	$\cdot 9858$	$8 \cdot 62$
$\cdot 9980$	$1 \cdot 07$	-9939	$3 \cdot 37$	-9898	$5 \cdot 89$	$\cdot 9857$	$8 \cdot 70$
$\cdot 9979$	$1 \cdot 12$	-9938	$3 \cdot 43$	$\cdot 9897$	$5 \cdot 96$. 9856	$8 \cdot 77$
$\cdot 9978$	$1 \cdot 18$	-9937	$3 \cdot 49$	$\cdot 9896$	$6 \cdot 02$	$\cdot 9855$	$8 \cdot 84$
. 9977	$1 \cdot 23$	-9936	$3 \cdot 55$	$\cdot 9895$	$6 \cdot 09$	$\cdot 9854$	$8 \cdot 91$
$\cdot 9976$	$1 \cdot 29$. 9935	$3 \cdot 61$	$\cdot 9894$	$6 \cdot 15$	$\cdot 9853$	$8 \cdot 98$
$\cdot 9975$	$1 \cdot 34$	$\cdot 9934$	$3 \cdot 67$	$\cdot 9893$	$6 \cdot 22$	$\cdot 9852$	$9 \cdot 05$
$\cdot 9974$	1.40	-9933	3.73	$\cdot 9892$	$6 \cdot 29$. 9851	$9 \cdot 12$
$\cdot 9973$	1.45	-9932	$3 \cdot 78$	$\cdot 9891$	$6 \cdot 35$. 9850	$9 \cdot 20$
. 9972	1.51	$\cdot 9931$	$3 \cdot 84$	$\cdot 9890$	$6 \cdot 42$	$\cdot 9849$	$9 \cdot 27$
.9971	$1 \cdot 56$. 9930	$3 \cdot 90$.9889	$6 \cdot 49$	$\cdot 9848$	$9 \cdot 34$
. 9970	$1 \cdot 61$. 9929	$3 \cdot 96$.9888	$6 \cdot 55$. 9847	$9 \cdot 41$
-9969	$1 \cdot 67$	-9928	$4 \cdot 02$	-9887	$6 \cdot 62$	$\cdot 9846$	$9 \cdot 49$
$\cdot 9968$	1.73	$\cdot 9927$	$4 \cdot 08$	-9886	$6 \cdot 69$	$\cdot 9845$	$9 \cdot 56$
. 9967	1.78	$\cdot 9926$	$4 \cdot 14$	$\cdot 9885$	6.75	$\cdot 9844$	$9 \cdot 63$
. 9966	1.83	-9925	$4 \cdot 20$	$\cdot 9884$	$6 \cdot 82$	$\cdot 9843$	$9 \cdot 70$
$\cdot 9965$	$1 \cdot 89$	$\cdot 9924$	$4 \cdot 27$	$\cdot 9883$	6.89	-9842	$9 \cdot 78$
. 9964	1.94	. 9923	$4 \cdot 33$	$\cdot 9882$	6.95	$\cdot 9841$	$9 \cdot 85$
. 9963	1.99	. 9922	$4 \cdot 39$. 9881	$7 \cdot 02$. 9840	$9 \cdot 92$
.9962	2.05	. 9921	$4 \cdot 45$. 9880	$7 \cdot 09$	$\cdot 9839$	$9 \cdot 99$
. 9961	$2 \cdot 11$	-9920	$4 \cdot 51$	$\cdot 9879$	$7 \cdot 16$	$\cdot 9838$	10.07
.9960	$2 \cdot 17$. 9919	$4 \cdot 57$. 9878	$7 \cdot 23$		

[^0]: * These lamps may be obtained of M. Wiesnegg of Paris, who has made several for the Normal School.

[^1]: * Bunsen.-Gasometry, p. 46.

